Do you want to publish a course? Click here

Light-hole Exciton in Nanowire Quantum Dot

72   0   0.0 ( 0 )
 Added by Mathieu Jeannin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum dots inserted inside semiconductor nanowires are extremely promising candidates as building blocks for solid-state based quantum computation and communication. They provide very high crystalline and optical properties and offer a convenient geometry for electrical contacting. Having a complete determination and full control of their emission properties is one of the key goals of nanoscience researchers. Here we use strain as a tool to create in a single magnetic nanowire quantum dot a light-hole exciton, an optically active quasiparticle formed from a single electron bound to a single light hole. In this frame, we provide a general description of the mixing within the hole quadruplet induced by strain or confinement. A multi-instrumental combination of cathodoluminescence, polarisation-resolved Fourier imaging and magneto-optical spectroscopy, allow us to fully characterize the hole ground state, including its valence band mixing with heavy hole states.



rate research

Read More

We report reproducible fabrication of InP-InAsP nanowire light emitting diodes in which electron-hole recombination is restricted to a quantum-dot-sized InAsP section. The nanowire geometry naturally self-aligns the quantum dot with the n-InP and p-InP ends of the wire, making these devices promising candidates for electrically-driven quantum optics experiments. We have investigated the operation of these nano-LEDs with a consistent series of experiments at room temperature and at 10 K, demonstrating the potential of this system for single photon applications.
Photon absorption in a semiconductor produces bright excitons that recombine very fast into photons. We here show that in a quantum dot set close to a p-doped reservoir, this absorption can produce a dark duo, i.e., an electron-hole pair that does not emit light. This unexpected effect relies on the fact that the wave function for a hole leaks out of a finite-barrier dot less than for electron. This difference can render the positively charged trio unstable in the dot by tuning the applied bias voltage in a field-effect device. The unstable trio that would result from photon absorption in a positively charged dot, has to eject one of its two holes. The remaining duo can be made dark with a probability close to 100% after a few pumping cycles with linearly polarized photons, in this way engineering long-lived initial states for quantum information processing.
We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a photo-generated electron-hole pair, is limited by the precession of the exciton spin due to the anisotropic exchange interaction.
We investigate theoretically the spectral and dynamical effects of the short-range exchange interaction between a single manganese (Mn) atom hosted by cylindrical CdTe quantum dots and its light-hole excitons or biexcitons. Our approach is based on the Kohn-Luttinger KP theory and configuration interaction method, the dynamics of the system in the presence of intraband relaxation being derived from the von Neumann-Lindblad equation. The complex structure of the light-hole exciton absorption spectrum reveals the exchange-induced exciton mixing and depends strongly on the Mn position. In particular, if the Mn atom is closer to the edges of the cylinder the bright and dark light-hole excitons are mixed by the hole-Mn exchange alone. Consequently, their populations exhibit exchange-induced Rabi oscillations which can be viewed as optical signatures of light-hole spin reversal. Similar results are obtained for mixed biexcitons, in this case the exchange-induced Rabi oscillations being damped by the intraband hole relaxation processes. The effect of light-hole heavy-hole mixing is also discussed.
Several important proposals to use semiconductor quantum dots in quantum information technology rely on the control of the dark exciton ground states, such as dark exciton based qubits with a $mu$s life time. In this paper, we present an efficient way to occupy the dark exciton ground state by a single short laser pulse. The scheme is based on an optical excitation with a longitudinal field component featured by, e.g., radially polarized beams or certain Laguerre-Gauss or Bessel beams. Utilizing this component, we show within a configuration interaction approach that high-energy exciton states composed of light-hole excitons and higher dark heavy-hole excitons can be addressed. When the higher exciton relaxes, a dark exciton in its ground state is created.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا