Do you want to publish a course? Click here

Fast high fidelity hole spin initialization in a single InGaAs quantum dot

237   0   0.0 ( 0 )
 Added by Timothy Godden
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a photo-generated electron-hole pair, is limited by the precession of the exciton spin due to the anisotropic exchange interaction.



rate research

Read More

We demonstrate optical control of the geometric phase acquired by one of the spin states of an electron confined in a charge-tunable InAs quantum dot via cyclic 2pi excitations of an optical transition in the dot. In the presence of a constant in-plane magnetic field, these optically induced geometric phases result in the effective rotation of the spin about the magnetic field axis and manifest as phase shifts in the spin quantum beat signal generated by two time-delayed circularly polarized optical pulses. The geometric phases generated in this manner more generally perform the role of a spin phase gate, proving potentially useful for quantum information applications.
We propose a technique to initialize an electron spin in a semiconductor quantum dot with a single short optical pulse. It relies on the fast depletion of the initial spin state followed by a preferential, Purcell-accelerated desexcitation towards the desired state thanks to a micropillar cavity. We theoretically discuss the limits on initialization rate and fidelity, and derive the pulse area for optimal initialization. We show that spin initialization is possible using a single optical pulse down to a few tens of picoseconds wide.
We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to electric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.
258 - D. Heiss , V. Jovanov , F. Klotz 2010
We demonstrate all optical electron spin initialization, storage and readout in a single self-assembled InGaAs quantum dot. Using a single dot charge storage device we monitor the relaxation of a single electron over long timescales exceeding 40{mu}s. The selective generation of a single electron in the quantum dot is performed by resonant optical excitation and subsequent partial exciton ionization; the hole is removed from the quantum dot whilst the electron remains stored. When subject to a magnetic field applied in Faraday geometry, we show how the spin of the electron can be prepared with a polarization up to 65% simply by controlling the voltage applied to the gate electrode. After generation, the electron spin is stored in the quantum dot before being read out using an all optical implementation of spin to charge conversion technique, whereby the spin projection of the electron is mapped onto the more robust charge state of the quantum dot. After spin to charge conversion, the charge state of the dot is repeatedly tested by pumping a luminescence recycling transition to obtain strong readout signals. In combination with spin manipulation using fast optical pulses or microwave pulses, this provides an ideal basis for probing spin coherence in single self-assembled quantum dots over long timescales and developing optimal methods for coherent spin control.
We consider the initialization of the spin-state of a single electron trapped in a self-assembled quantum dot via optical pumping of a trion level. We show that with a magnetic field applied perpendicular to the growth direction of the dot, a near-unity fidelity can be obtained in a time equal to a few times the inverse of the spin-conserving trion relaxation rate. This method is several orders-of-magnitude faster than with the field aligned parallel, since this configuration must rely on a slow hole spin-flip mechanism. This increase in speed does result in a limit on the maximum obtainable fidelity, but we show that for InAs dots, the error is very small.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا