Do you want to publish a course? Click here

Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix

361   0   0.0 ( 0 )
 Added by Nikolay Kacharov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of different dwarf morphological types. Here we present results from a spectroscopic survey of ~200 individual red giant branch stars in the Phoenix dwarf, the closest transition type with a comparable luminosity to classical dwarf galaxies. We measure a systemic heliocentric velocity V = -21.2 km/s. Our survey reveals the clear presence of prolate rotation, which is aligned with the peculiar spatial distribution of the youngest stars in Phoenix. We speculate that both features might have arisen from the same event, possibly an accretion of a smaller system. The evolved stellar population of Phoenix is relatively metal-poor (<[Fe/H]> = -1.49+/-0.04 dex) and shows a large metallicity spread ($sigma_{rm [Fe/H]} = 0.51pm0.04$,dex), with a pronounced metallicity gradient of -0.13+/-0.01 dex per arcmin similar to luminous, passive dwarf galaxies. We also report a discovery of an extremely metal-poor star candidate in Phoenix and discuss the importance of correcting for spatial sampling when interpreting the chemical properties of galaxies with metallicity gradients. This study presents a major leap forward in our knowledge of the internal kinematics of the Phoenix transition type dwarf galaxy, and the first wide area spectroscopic survey of its metallicity properties.



rate research

Read More

Stellar prolate rotation in dwarf galaxies is rather uncommon, with only two known galaxies in the Local Group showing such feature (Phoenix and And II). Cosmological simulations show that in massive early-type galaxies prolate rotation likely arises from major mergers. However, the origin of such kinematics in the dwarf galaxies regime has only been explored using idealized simulations. Here we made use of hydrodynamical cosmological simulations of dwarfs galaxies with stellar mass between $3times10^5$ and $5times10^8$ M$_{odot}$ to explore the formation of prolate rotators. Out of $27$ dwarfs, only one system showed clear rotation around the major axis, whose culprit is a major merger at $z=1.64$, which caused the transition from an oblate to a prolate configuration. Interestingly, this galaxy displays a steep metallicity gradient, reminiscent of the one measured in Phoenix and And II: this is the outcome of the merger event that dynamically heats old, metal-poor stars, and of the centrally concentrated residual star formation. Major mergers in dwarf galaxies offer a viable explanation for the formation of such peculiar systems, characterized by steep metallicity gradients and prolate rotation.
Tens of early type galaxies have been recently reported to possess prolate rotation, i.e. significant amount of rotation around the major axis, including two cases in the Local Group. Although expected theoretically, this phenomenon is rarely observed and remains elusive. In order to explore its origin we study the population of well-resolved galaxies in the Illustris cosmological simulation. We identify 59 convincing examples of prolate rotators at the present time, more frequently among more massive galaxies, with the number varying very little with redshift. We follow their evolution back in time using the main progenitor branch galaxies of the Illustris merger trees. We find that the emergence of prolate rotation is strongly correlated with the time of the last significant merger the galaxy experienced, although other evolutionary paths leading to prolate rotation are also possible. The transition to prolate rotation most often happens around the same time as the transition to prolate shape of the stellar component. The mergers leading to prolate rotation have slightly more radial orbits, higher mass ratios, and occur at more recent times than mergers in the reference sample of twin galaxies we construct for comparison. However, they cover a wide range of initial conditions in terms of the mass ratio, merger time, radiality of the progenitor orbits, and the relative orientations of spins of the progenitors with respect to the orbital angular momenta. About half of our sample of prolate rotators were created during gas-rich mergers and the newly formed stars usually support prolate rotation.
204 - Ivana Ebrova , Ewa L. Lokas 2015
Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study its origin via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. The frequency analysis of stellar orbits in the plane perpendicular to the major axis reveals the presence of two families roughly corresponding to inner and outer long-axis tubes. The fraction of inner tubes is largest in the remnant forming from disks oriented most vertically initially and is responsible for the boxy shape of the galaxy. We conclude that prolate rotation results from mergers with a variety of initial conditions and no fine tuning is necessary to reproduce this feature. We compare the properties of our merger remnants to those of dwarfs resulting from the tidal stirring scenario and the data for Andromeda II.
The thick disk rotation--metallicity correlation, partial V_phi/partial[Fe/H] =40div 50 km s^{-1}dex^{-1} represents an important signature of the formation processes of the galactic disk. We use nondissipative numerical simulations to follow the evolution of a Milky Way (MW)-like disk to verify if secular dynamical processes can account for this correlation in the old thick disk stellar population. We followed the evolution of an ancient disk population represented by 10 million particles whose chemical abundances were assigned by assuming a cosmologically plausible radial metallicity gradient with lower metallicity in the inner regions, as expected for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer regions and populate layers located at higher |z|. A rotation--metallicity correlation appears, which well resembles the behaviour observed in our Galaxy at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure a correlation of partial V_phi/partial[Fe/H]simeq 60 km s^{-1}dex^{-1} for particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body models can account for the V_phi vs. [Fe/H] correlation observed in the thick disk of our Galaxy, suggesting that processes internal to the disk such as heating and radial migration play a role in the formation of this old stellar component. In this scenario, the positive rotation-metallicity correlation of the old thick disk population would represent the relic signature of an ancient inverse chemical (radial) gradient in the inner Galaxy, which resulted from accretion of primordial gas.
We examine the circular velocity profiles of galaxies in {Lambda}CDM cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark matter-dominated systems, reflecting the expected similarity of the underlying cold dark matter haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for cold dark matter haloes and include many galaxies where previous work claims the presence of a constant density core. The cusp vs core issue is thus better characterized as an inner mass deficit problem than as a density slope mismatch. For several galaxies the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of inner mass deficit galaxies inferred from kinematic data are incorrect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا