Do you want to publish a course? Click here

Galaxies with prolate rotation in Illustris

67   0   0.0 ( 0 )
 Added by Ivana Ebrova
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tens of early type galaxies have been recently reported to possess prolate rotation, i.e. significant amount of rotation around the major axis, including two cases in the Local Group. Although expected theoretically, this phenomenon is rarely observed and remains elusive. In order to explore its origin we study the population of well-resolved galaxies in the Illustris cosmological simulation. We identify 59 convincing examples of prolate rotators at the present time, more frequently among more massive galaxies, with the number varying very little with redshift. We follow their evolution back in time using the main progenitor branch galaxies of the Illustris merger trees. We find that the emergence of prolate rotation is strongly correlated with the time of the last significant merger the galaxy experienced, although other evolutionary paths leading to prolate rotation are also possible. The transition to prolate rotation most often happens around the same time as the transition to prolate shape of the stellar component. The mergers leading to prolate rotation have slightly more radial orbits, higher mass ratios, and occur at more recent times than mergers in the reference sample of twin galaxies we construct for comparison. However, they cover a wide range of initial conditions in terms of the mass ratio, merger time, radiality of the progenitor orbits, and the relative orientations of spins of the progenitors with respect to the orbital angular momenta. About half of our sample of prolate rotators were created during gas-rich mergers and the newly formed stars usually support prolate rotation.



rate research

Read More

A small fraction of early-type galaxies (ETGs) show prolate rotation, i.e. they rotate around their long photometric axis. In simulations, certain configurations of galaxy mergers are known to produce this type of rotation. We investigate the association of prolate rotation and signs of galaxy interactions among the observed galaxies. We collected a sample of 19 nearby ETGs with distinct prolate rotation from the literature and inspected their ground-based deep optical images for interaction signs - 18 in archival images and one in a new image obtained with the Milankovic telescope. Tidal tails, shells, asymmetric/disturbed stellar halos, or on-going interactions are present in all the 19 prolate rotators. Comparing this with the frequency of tidal disturbance among the general sample of ETGs of a roughly similar mass range and surface-brightness limit, we estimate that the chance probability of such an observation is only 0.00087. We also found a significant overabundance of prolate rotators that are hosting multiple stellar shells. The visible tidal features imply a relatively recent galaxy interaction. That agrees with the Illustris large-scale cosmological hydrodynamical simulation, where prolate rotators are predominantly formed in major mergers during the last 6 Gyr. In the appendix, we present the properties of an additional galaxy, NGC 7052, a prolate rotator for which no deep images are available, but for which an HST image revealed the presence of a prominent shell, which had not been reported before.
216 - Ivana Ebrova , Ewa L. Lokas 2015
Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study its origin via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. The frequency analysis of stellar orbits in the plane perpendicular to the major axis reveals the presence of two families roughly corresponding to inner and outer long-axis tubes. The fraction of inner tubes is largest in the remnant forming from disks oriented most vertically initially and is responsible for the boxy shape of the galaxy. We conclude that prolate rotation results from mergers with a variety of initial conditions and no fine tuning is necessary to reproduce this feature. We compare the properties of our merger remnants to those of dwarfs resulting from the tidal stirring scenario and the data for Andromeda II.
(Abridged) Any viable cosmological model in which galaxies interact predicts the existence of primordial and tidal dwarf galaxies (TDGs). In particular, in the standard model of cosmology ($Lambda$CDM), according to the dual dwarf galaxy theorem, there must exist both primordial dark matter-dominated and dark matter-free TDGs with different radii. We study the frequency, evolution, and properties of TDGs in a $Lambda$CDM cosmology. We use the hydrodynamical cosmological Illustris-1 simulation to identify tidal dwarf galaxy candidates (TDGCs) and study their present-day physical properties. We also present movies on the formation of a few galaxies lacking dark matter, confirming their tidal dwarf nature. TDGCs can however also be formed via other mechanisms, such as from ram-pressure-stripped material or, speculatively, from cold-accreted gas. We find 97 TDGCs with $M_{stellar} >5 times 10^7 M_odot$ at redshift $z = 0$, corresponding to a co-moving number density of $2.3 times 10^{-4} h^3 cMpc^{-3}$. The most massive TDGC has $M_{total} = 3.1 times 10^9 M_odot$, comparable to that of the Large Magellanic Cloud. TDGCs are phase-space-correlated, reach high metallicities, and are typically younger than dark matter-rich dwarf galaxies. We report for the first time the verification of the dual dwarf theorem in a self-consistent $Lambda$CDM cosmological simulation. Simulated TDGCs and dark matter-dominated galaxies populate different regions in the radius-mass diagram in disagreement with observations of early-type galaxies. The dark matter-poor galaxies formed in Illustris-1 have comparable radii to observed dwarf galaxies and to TDGs formed in other galaxy-encounter simulations. In Illustris-1, only 0.17% of all selected galaxies with $M_{stellar} = 5 times 10^7-10^9 M_odot$ are TDGCs or dark matter-poor dwarf galaxies. The occurrence of NGC 1052-DF2-type objects is discussed.
There is a consensus in the literature that starburst galaxies are triggered by inter- action events. However, it remains an open question as to what extent both merging and non-merging interactions have in triggering starbursts? In this study, we make use of the Illustris simulation to test how different triggering mechanisms can effect starburst events. We examine star formation rate, colour and environment of starburst galaxies to determine if this could be why we witness a bimodality in post-starburst populations within observational studies. Further, we briefly test the extent of quenching due to AGN feedback. From Illustris, we select 196 starburst galaxies at z = 0.15 and split them into post-merger and pre-merger/harassment driven starburst samples. We find that 55% of this sample not undergone a merger in the past 2 Gyr. Both of our samples are located in low-density environments within the filament regions of the cosmic web, however we find that pre-merger/harassment driven starburst are in higher density environments than post-merger driven starbursts. We also find that pre-merger/harassment starbursts are redder than post-merger starbursts, this could be driven by environmental effects. Both however, produce nuclear starbursts of comparable strengths.
Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of different dwarf morphological types. Here we present results from a spectroscopic survey of ~200 individual red giant branch stars in the Phoenix dwarf, the closest transition type with a comparable luminosity to classical dwarf galaxies. We measure a systemic heliocentric velocity V = -21.2 km/s. Our survey reveals the clear presence of prolate rotation, which is aligned with the peculiar spatial distribution of the youngest stars in Phoenix. We speculate that both features might have arisen from the same event, possibly an accretion of a smaller system. The evolved stellar population of Phoenix is relatively metal-poor (<[Fe/H]> = -1.49+/-0.04 dex) and shows a large metallicity spread ($sigma_{rm [Fe/H]} = 0.51pm0.04$,dex), with a pronounced metallicity gradient of -0.13+/-0.01 dex per arcmin similar to luminous, passive dwarf galaxies. We also report a discovery of an extremely metal-poor star candidate in Phoenix and discuss the importance of correcting for spatial sampling when interpreting the chemical properties of galaxies with metallicity gradients. This study presents a major leap forward in our knowledge of the internal kinematics of the Phoenix transition type dwarf galaxy, and the first wide area spectroscopic survey of its metallicity properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا