Do you want to publish a course? Click here

On a limitation of Zeeman polarimetry and imperfect instrumentation in representing solar magnetic fields with weaker polarization signal

301   0   0.0 ( 0 )
 Added by Alexei Pevtsov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Full disk vector magnetic fields are used widely for developing better understanding of large-scale structure, morphology, and patterns of the solar magnetic field. The data are also important for modeling various solar phenomena. However, observations of vector magnetic fields have one important limitation that may affect the determination of the true magnetic field orientation. This limitation stems from our ability to interpret the differing character of the Zeeman polarization signals which arise from the photospheric line-of-sight vs. the transverse components of the solar vector magnetic field, and is likely exacerbated by unresolved structure (non-unity fill fraction) as well as the disambiguation of the 180$^circ$ degeneracy in the transverse-field azimuth. Here we provide a description of this phenomenon, and discuss issues, which require additional investigation.



rate research

Read More

83 - M. Derouich 2016
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed hare and hound approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D$_{1}$ line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe {sc i} $lambda$ 6302.5 AA observed at IRSOL in Locarno.
We are reaching the point where spectropolarimetric surveys have run for long enough to reveal solar-like magnetic activity cycles. In this paper we investigate what would be the best strategy to identify solar-like magnetic cycles and ask which large-scale magnetic field parameters best follow a solar-type magnetic cycle and are observable with the Zeeman-Doppler-Imaging (ZDI) technique. We approach these questions using the 3D non-potential flux transport simulations of cite{Yeates2012} modelling the solar vector magnetic field over 15 years (centred on solar cycle 23). The flux emergence profile was extracted from solar synoptic maps and used as input for a photospheric flux transport model in combination with a non-potential coronal evolution model. We synthesise spectropolarimetric data from the simulated maps and reconstruct them using ZDI. The ZDI observed solar cycle is set into the context of other cool star observations and we present observable trends of the magnetic field topology with time, sunspot number and S-index. We find that the axisymmetric energy fraction is the best parameter of the ZDI detectable large-scale field to trace solar-like cycles. Neither the surface averaged large-scale field or the total magnetic energy is appropriate. ZDI seems also to be able to recover the increase of the toroidal energy with S-index. We see further that ZDI might unveil hints of the dynamo modes that are operating and of the global properties of the small-scale flux emergence like active latitudes.
In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as <0.3%. To demonstrate the stability of RITPICs calibration and its extreme portability, we performed imaging polarimetry of the Solar corona in Madras, Oregon during the total Solar eclipse of 2017. The maximum polarization we measured was ~46%, which agrees well with the maximum value predicted for a Thomson scattering corona. Similarly, we found no strong deviations in the angle of linear polarization from the tangential direction. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.
Self-organization properties of sustained magnetized plasma are applied to selected solar data to understand solar magnetic fields. Torsional oscillations are speed-up and slow-down bands of the azimuthal flow that correlate with the solar cycle, and they imply the existence of a symmetric solar dynamo with a measured polar flux of 3x10^14 Wb. It is shown that the solar dynamo is thin (~0.1 Mm gradient scale size) and powerful (~10^23 W). These properties are found from the amplitude of the torsional oscillations and the relationship of their velocity contours to solar magnetograms supports the result. The dynamo has enough power to heat the chromosphere and to power the corona and the solar wind. The dynamo also causes a rigid rotation of the heliosphere out to at least the corona and the relationship of the rotation of the corona to solar magnetograms supports this result as well. The thin solar dynamo sustains a thin stable minimum energy state that seems to be covering most of the solar surface just below the photosphere. The magnetic field lines of the minimum energy state should be parallel to the solar surface and rotate with distance from the surface with 2{pi} radians of rotation in ~1 Mm Resistive diffusion helps to push the magnetic fields to the surface and the global magnetic structure (GMS) seems to lose {pi} radians every 11 years, causing the observed 180 degree flipping of the solar magnetic field. The thin sheets of magnetized plasma in solar prominences may be the lost thin sheets of the GMS. For completeness, the formation of sunspots, CMEs and flares is discussed.
Magnetic flux generated and intensified by the solar dynamo emerges into the solar atmosphere, forming active regions (ARs) including sunspots. Existing theories of flux emergence suggest that the magnetic flux can rise buoyantly through the convection zone but is trapped at the photosphere, while its further rising into the atmosphere resorts to the Parker buoyancy instability. To trigger such an instability, the Lorentz force in the photosphere needs to be as large as the gas pressure gradient to hold up an extra amount of mass against gravity. This naturally results in a strongly non-force-free photosphere, which is indeed shown in typical idealized numerical simulations of flux tube buoyancy from below the photosphere into the corona. Here we conduct a statistical study of the extents of normalized Lorentz forces and torques in the emerging photospheric magnetic field with a substantially large sample of SDO/HMI vector magnetograms. We found that the photospheric field has a rather small Lorentz force and torque on average, and thus is very close to a force-free state, which is not consistent with theories as well as idealized simulations of flux emergence. Furthermore, the small extents of forces and torques seem not to be influenced by the emerging ARs size, the emergence rate, or the non-potentiality of the field. This result puts an important constraint on future development of theories and simulations of flux emergence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا