Do you want to publish a course? Click here

Light matter interaction in transition metal dichalcogenides and their heterostructures

236   0   0.0 ( 0 )
 Added by Ursula Wurstbauer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The investigation of 2D van der Waals (vdW) materials is a vibrant, fast moving and still growing interdisciplinary area of research. 2D vdW materials are truly 2D crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers with a variety of different electronic, optical and mechanical properties. A very prominent class of 2D materials are transition metal dichalcogenides (TMDs) and amongst them particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range, decent charge carrier mobility together with high (photo-)catalytic and mechanical stability and exotic many body phenomena. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. Furthermore, the materials exhibit a strong light matter interaction providing a high sun light absorbance of up to 15% in the monolayer limit, strong scattering cross section in Raman experiments and access to excitonic phenomena in vdW heterostructures. This review focuses on the light matter interaction in MoS2, WS2, MoSe2, and WSe2 that is dictated by the materials complex dielectric functions and on the multiplicity of studying the first order phonon modes by Raman spectroscopy to gain access to several material properties such as doping, strain, defects and temperature. 2D materials provide an interesting platform to stack them into vdW heterostructures without the limitation of lattice mismatch resulting in novel devices for application but also to study exotic many body interaction phenomena such as interlayer excitons. Future perspectives of semiconducting TMDs and their heterostructures for applications in optoelectronic devices will be examined and routes to study emergent fundamental problems and many-body quantum phenomena under excitations with photons will be discussed.



rate research

Read More

We use a van-der-Waals pickup technique to fabricate different heterostructures containing WSe$_2$(WS$_2$) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts and a topgate was deposited. For graphene/WSe$_2$/SiO$_2$ samples we observe mobilities of $sim$12 000 cm$^2$/Vs. Magnetic field dependent resistance measurements on these samples show a peak in the conductivity at low magnetic field. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe$_2$(WS$_2$) and hBN show a much higher mobility of up to $sim$120 000 cm$^2$/Vs. However, in these samples no WAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic field a resistance peak appears, which we ascribe to a size effect, due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors, due to complete lifting of the spin and valley degeneracy.
Two dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary physical properties. The unique properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different types of van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
We study direct and indirect magnetoexcitons in Rydberg states in monolayers and heterostructures of transition-metal dichalcogenices (TMDCs) in an external magnetic field, applied perpendicular to the monolayer or heterostructures. We calculate binding energies of magnetoexcitons for the Rydberg states 1$s$, 2$s$, 3$s$, and 4$s$ by numerical integration of the Schr{o}dinger equation using the Rytova-Keldysh potential for direct magnetoexcitons and both the Rytova-Keldysh and Coulomb potentials for indirect magnetoexcitons. Latter allows understanding the role of screening in TMDCs heterostructures. We report the magnetic field energy contribution to the binding energies and diamagnetic coefficients (DMCs) for direct and indirect magnetoexcitons. The tunability of the energy contribution of direct and indirect magnetoexcitons by the magnetic field is demonstrated. It is shown that binding energies and DMCs of indirect magnetoexcitons can be manipulated by the number of hBN layers. Therefore, our study raises the possibility of controlling the binding energies of direct and indirect magnetostrictions in TMDC monolayers, bilayers and heterostructures using magnetic field and opens an additional degree of freedom to tailor the binding energies and DMCs for heterostructures by varying the number of hBN sheets between TMDC layers. The calculations of the binding energies and DMCs of indirect magnetoexcitons in TMDC heterostructures are novel and can be compared with the experimental results when they will be available.
We report a systematic study on strong enhancement of spin-orbit interaction (SOI) in graphene driven by transition-metal dichalcogenides (TMDs). Low temperature magnetotoransport measurements of graphene proximitized to different TMDs (monolayer and bulk WSe$_2$, WS$_2$ and monolayer MoS$_2$) all exhibit weak antilocalization peaks, a signature of strong SOI induced in graphene. The amplitudes of the induced SOI are different for different materials and thickness, and we find that monolayer WSe$_2$ and WS$_2$ can induce much stronger SOI than bulk ones and also monolayer MoS$_2$. The estimated spin-orbit (SO) scattering strength for the former reaches $sim$ 10 meV whereas for the latter it is around 1 meV or less. We also discuss the symmetry and type of the induced SOI in detail, especially focusing on the identification of intrinsic and valley-Zeeman (VZ) SOI via the dominant spin relaxation mechanism. Our findings offer insight on the possible realization of the quantum spin Hall (QSH) state in graphene.
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the interlayer interactions. In this topical review, we cover fabrication and characterization of van der Waals heterosructures with a focus on heterobilayers made of monolayers of semiconducting transition metal dichalcogenides. Experimental and theoretical techniques to investigate those heterobilayers are introduced. Most recent findings focusing on different transition metal dichalcogenides heterostructures are presented and possible optical transitions between different valleys, appearance of moire patterns and signatures of moire excitons are discussed. The fascinating and fast growing research on van der Waals hetero-bilayers provide promising insights required for their application as emerging quantum-nano materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا