Do you want to publish a course? Click here

Magnetoexcitons in transition-metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures

132   0   0.0 ( 0 )
 Added by Roman Kezerashvili
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study direct and indirect magnetoexcitons in Rydberg states in monolayers and heterostructures of transition-metal dichalcogenices (TMDCs) in an external magnetic field, applied perpendicular to the monolayer or heterostructures. We calculate binding energies of magnetoexcitons for the Rydberg states 1$s$, 2$s$, 3$s$, and 4$s$ by numerical integration of the Schr{o}dinger equation using the Rytova-Keldysh potential for direct magnetoexcitons and both the Rytova-Keldysh and Coulomb potentials for indirect magnetoexcitons. Latter allows understanding the role of screening in TMDCs heterostructures. We report the magnetic field energy contribution to the binding energies and diamagnetic coefficients (DMCs) for direct and indirect magnetoexcitons. The tunability of the energy contribution of direct and indirect magnetoexcitons by the magnetic field is demonstrated. It is shown that binding energies and DMCs of indirect magnetoexcitons can be manipulated by the number of hBN layers. Therefore, our study raises the possibility of controlling the binding energies of direct and indirect magnetostrictions in TMDC monolayers, bilayers and heterostructures using magnetic field and opens an additional degree of freedom to tailor the binding energies and DMCs for heterostructures by varying the number of hBN sheets between TMDC layers. The calculations of the binding energies and DMCs of indirect magnetoexcitons in TMDC heterostructures are novel and can be compared with the experimental results when they will be available.



rate research

Read More

We study direct and indirect excitons in Rydberg states in phosphorene monolayers, bilayer and van der Waals (vdW) heterostructure in an external magnetic field, applied perpendicular to the monolayer or heterostructure within the framework of the effective mass approximation. Binding energies of magnetoexcitons are calculated by a numerical integration of the Schrodinger equation using the Rytova-Keldysh potential for direct magnetoexcitons and both the Rytova-Keldysh and Coulomb potentials for indirect one. The latter allows to understand the role of screening in phosphorene. We report the magnetic field energy contribution to the binding energies and diamagnetic coefficients (DMCs) for magnetoexcitons that strongly depend on the effective mass of electron and hole and their anisotropy and can be tuned by the external magnetic field. We demonstrate theoretically that the vdW phosphorene heterostructure is a novel category of 2D semiconductor offering a tunability of the binding energies of magnetoexcitons by mean of external magnetic field and control the binding energies and DMCs by the number of hBN layers separated two phosphorene sheets. Such tunability is potentially useful for the devices design.
Van der Waals (vdW) heterobilayers formed by two-dimensional (2D) transition metal dichalcogenides (TMDCs) created a promising platform for various electronic and optical properties. ab initio band results indicate that the band offset of type-II band alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer, instead of an external electric field. On the basis of symmetry analysis, the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined, and a four-level kp model was developed to obtain the interlayer hopping. Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets. Moreover, the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.
Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral composite bosons consisting of electrons and holes, excitons show a non-trivial scattering dynamics. Here, we study on microscopic footing exciton-exciton interaction in transition-metal dichalcogenides and related van der Waals heterostructures. We demonstrate that the crucial criterion for efficient scattering is a large electron/hole mass asymmetry giving rise to internal charge inhomogeneities of excitons and emphasizing their cobosonic substructure. Furthermore, both exchange and direct exciton-exciton interactions are boosted by enhanced exciton Bohr radii. We also predict an unexpected temperature dependence that is usually associated to phonon-driven scattering and we reveal an orders of magnitude stronger interaction of interlayer excitons due to their permanent dipole moment. The developed approach can be generalized to arbitrary material systems and will help to study strongly correlated exciton systems, such as moire super lattices.
Van der Waals semiconductor heterostructures could be a platform to harness hot photoexcited carriers in the next generation of optoelectronic and photovoltaic devices. The internal quantum efficiency of hot-carrier devices is determined by the relation between photocarrier extraction and thermalization rates. Using textit{ab-initio} methods we show that the photocarrier thermalization time in single-layer transition metal dichalcogenides strongly depends on the peculiarities of the phonon spectrum and the electronic spin-orbit coupling. In detail, the lifted spin degeneracy in the valence band suppresses the hole scattering on acoustic phonons, slowing down the thermalization of holes by one order of magnitude as compared to electrons. Moreover, the hole thermalization time behaves differently in MoS$_2$ and WSe$_2$ because spin-orbit interactions differ in these seemingly similar materials. We predict that the internal quantum efficiency of a tunneling van der Waals semiconductor heterostructure depends qualitatively on whether MoS$_2$ or WSe$_2$ is used.
Monolayers of transition metal dichalcogenides (TMDCs) feature exceptional optical properties that are dominated by excitons, tightly bound electron-hole pairs. Forming van der Waals heterostructures by deterministically stacking individual monolayers allows to tune various properties via choice of materials and relative orientation of the layers. In these structures, a new type of exciton emerges, where electron and hole are spatially separated. These interlayer excitons allow exploration of many-body quantum phenomena and are ideally suited for valleytronic applications. Mostly, a basic model of fully spatially-separated electron and hole stemming from the $K$ valleys of the monolayer Brillouin zones is applied to describe such excitons. Here, we combine photoluminescence spectroscopy and first principle calculations to expand the concept of interlayer excitons. We identify a partially charge-separated electron-hole pair in MoS$_2$/WSe$_2$ heterostructures residing at the $Gamma$ and $K$ valleys. We control the emission energy of this new type of momentum-space indirect, yet strongly-bound exciton by variation of the relative orientation of the layers. These findings represent a crucial step towards the understanding and control of excitonic effects in TMDC heterostructures and devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا