No Arabic abstract
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the interlayer interactions. In this topical review, we cover fabrication and characterization of van der Waals heterosructures with a focus on heterobilayers made of monolayers of semiconducting transition metal dichalcogenides. Experimental and theoretical techniques to investigate those heterobilayers are introduced. Most recent findings focusing on different transition metal dichalcogenides heterostructures are presented and possible optical transitions between different valleys, appearance of moire patterns and signatures of moire excitons are discussed. The fascinating and fast growing research on van der Waals hetero-bilayers provide promising insights required for their application as emerging quantum-nano materials.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links between real materials properties and terms that can be cooked up on the model Hamiltonian level to realize different exotic phenomena. Our review aims to do precisely this: we first discuss, in a way accessible to the materials community, what ingredients need to be included in the hybrid quantum materials recipe, and second, we elaborate on the specific materials that would possess the necessary qualities. We will review the well-established procedures for realizing 2D topological superconductors, quantum spin-liquids and flat bands systems, emphasizing the connection between well-known model Hamiltonians and real compounds. We will use the most recent experimental results to illustrate the power of the designer approach.
In van der Waals (vdW) heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moire superlattice. While it is widely recognized that a moire superlattice can modulate the electronic band structure and lead to novel transport properties including unconventional superconductivity and insulating behavior driven by correlations, its influence on optical properties has not been investigated experimentally. We present spectroscopic evidence that interlayer excitons are confined by the moire potential in a high-quality MoSe2/WSe2 heterobilayer with small rotational twist. A series of interlayer exciton resonances with either positive or negative circularly polarized emission is observed in photoluminescence, consistent with multiple exciton states confined within the moire potential. The recombination dynamics and temperature dependence of these interlayer exciton resonances are consistent with this interpretation. These results demonstrate the feasibility of engineering artificial excitonic crystals using vdW heterostructures for nanophotonics and quantum information applications.
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructures and include the effects of the source spectrum, oblique incidence and the spectral sensitivity of the detector to obtain a realistic model. A visibility experiment is performed at different wavelengths, resulting in a very good agreement with our calculations. This allows us to reliably predict the conditions for better visibility of graphene in van der Waals heterostructures. The framework and the codes provided in this work can be extended to study the visibility of any 2D material within an arbitrary van der Waals heterostructure.
Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplary MoSe$_2$-WSe$_2$ heterostructure the interlayer exciton binding energies and wave functions as well as their time- and energy-resolved dynamics. Finally, we predict the dominant contribution of interlayer excitons to the photoluminescence of these materials.
In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be dramatically changed by a moire pattern induced by twist angles between different layers. Such process is referred to as twistronics, where the tuning of twist angle can be realized through mechanical manipulation of 2D materials. Here we demonstrate an experimental technique that can achieve in situ dynamical rotation and manipulation of 2D materials in van der Waals heterostructures. Using this technique we fabricated heterostructures where graphene is perfectly aligned with both top and bottom encapsulating layers of hexagonal boron nitride. Our technique enables twisted 2D material systems in one single stack with dynamically tunable optical, mechanical, and electronic properties.