No Arabic abstract
We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. Two different scenarios depending on whether the global U(1) symmetry is broken or not have been studied. In the unbroken phase, the decay of the complex singlet is protected by the global U(1) symmetry which leads to an ideal cold dark matter candidate. In the broken phase, we are able to provide a second Higgs at $554,rm{GeV}$. In addition, gauging the global U(1) symmetry, we can construct an asymptotically safe U(1) leptophobic model. We combine the notion of asymptotic safety with conformal symmetry and use the renormalization group equations as a bridge to connect UV boundary conditions and Electroweak/ TeV scale physics. We also provide a detailed example to show that these boundary conditions will lead to phenomenological signatures such as diboson excesses which could be tested at the LHC.
Gauge singlet extensions of the Standard Model (SM) scalar sector may help remedy its theoretical and phenomenological shortcomings while solving outstanding problems in cosmology. Depending on the symmetries of the scalar potential, such extensions may provide a viable candidate for the observed relic density of cold dark matter or a strong first order electroweak phase transition needed for electroweak baryogenesis. Using the simplest extension of the SM scalar sector with one real singlet field, we analyze the generic implications of a singlet-extended scalar sector for Higgs boson phenomenology at the Large Hadron Collider (LHC). We consider two broad scenarios: one in which the neutral SM Higgs and singlet mix and the other in which no mixing occurs and the singlet can be a dark matter particle. For the first scenario, we analyze constraints from electroweak precision observables and their implications for LHC Higgs phenomenology. For models in which the singlet is stable, we determine the conditions under which it can yield the observed relic density, compute the cross sections for direct detection in recoil experiments, and discuss the corresponding signatures at the LHC.
The question of whether classically conformal modifications of the standard model are consistent with experimental obervations has recently been subject to renewed interest. The method of Gildener and Weinberg provides a natural framework for the study of the effective potential of the resulting multi-scalar standard model extensions. This approach relies on the assumption of the ordinary loop hierarchy $lambda_text{s} sim g^2_text{g}$ of scalar and gauge couplings. On the other hand, Andreassen, Frost and Schwartz recently argued that in the (single-scalar) standard model, gauge invariant results require the consistent scaling $lambda_text{s} sim g^4_text{g}$. In the present paper we contrast these two hierarchy assumptions and illustrate the differences in the phenomenological predictions of minimal conformal extensions of the standard model.
We consider generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal Standard Model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass $M_s>80 GeV$. However in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%--100% with $106 GeV<M_s<120 GeV$. However, when the higher-order effects needed for consistency with a $125 GeV$ Higgs mass are estimated, the abundance becomes 10%--80% for $80 GeV<M_s<96 GeV$, representing a significant decrease in the dark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the $M_s>80 GeV$ detection region of the next generation XENON experiment.
We investigate asymptotically safe extensions of the Standard Model with new matter fields arising in the TeV energy range. The new sector contains singlet scalars and vector-like fermions in representations which permit Yukawa interactions with the Standard Model leptons. Phenomenological implications are explored including charged lepton flavour violation, Drell-Yan processes and lepton anomalous magnetic moments. For the latter, we find that BSM contributions can be sizeable enough to explain the present experimental discrepancies of the electron and muon anomalous magnetic moments with the Standard Model.
We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global $U(1)$ symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global $U(1)$ symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the models couplings and masses. We have found there exists a second Higgs boson with a mass of approximately $550,rm{GeV}$ that mixes with the known $125,rm{GeV}$ Higgs with a large mixing angle $sinthetaapprox 0.47$ consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass $720,rm{GeV}$ and an $830,rm{GeV}$ extra vector-like fermion $F$, which is able to address the $750,rm{GeV}$ LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.