Do you want to publish a course? Click here

Consistent Conformal Extensions of the Standard Model

82   0   0.0 ( 0 )
 Added by Jan Plefka
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The question of whether classically conformal modifications of the standard model are consistent with experimental obervations has recently been subject to renewed interest. The method of Gildener and Weinberg provides a natural framework for the study of the effective potential of the resulting multi-scalar standard model extensions. This approach relies on the assumption of the ordinary loop hierarchy $lambda_text{s} sim g^2_text{g}$ of scalar and gauge couplings. On the other hand, Andreassen, Frost and Schwartz recently argued that in the (single-scalar) standard model, gauge invariant results require the consistent scaling $lambda_text{s} sim g^4_text{g}$. In the present paper we contrast these two hierarchy assumptions and illustrate the differences in the phenomenological predictions of minimal conformal extensions of the standard model.



rate research

Read More

70 - Antonio Costantini 2017
In this thesis we study some theoretical and phenomenological aspects of classical conformal symmetry in specific extensions of the SM. We consider both supersymmetric and non supersymmetric cases. We discuss the perturbative structure of the superconformal anomaly effective action. We show that the manifestation of the anomaly is in the presence of massless intermediate states in correlators involving the Ferrara-Zumino supercurrent with two vector supercurrents. This universal feature is typical both of chiral and conformal anomalies. These results are used in a study of a possible extension of the SM with a dilaton, deriving some bounds on a possible conformal scale. Then we turn to investigate a specific superconformal theory, the TNMSSM, which extends the MSSM with one extra triplet and a scalar singlet superfield. The manifestation of the classical conformal symmetry in this model is in the existence of a very light pseudoscalar in the physical spectrum. We study the main proprieties of this state and its potential discovery at the LHC. In the last part of this work we discuss an application of the graviton-photon-photon vertex to gravitational lensing for a Schwarzschild background. In particular, we introduce the notion of a semiclassical lens equation for the deflection of a photon nearing the horizon of a black hole.
We investigate asymptotically safe extensions of the Standard Model with new matter fields arising in the TeV energy range. The new sector contains singlet scalars and vector-like fermions in representations which permit Yukawa interactions with the Standard Model leptons. Phenomenological implications are explored including charged lepton flavour violation, Drell-Yan processes and lepton anomalous magnetic moments. For the latter, we find that BSM contributions can be sizeable enough to explain the present experimental discrepancies of the electron and muon anomalous magnetic moments with the Standard Model.
130 - P. Di Vecchia 2008
In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.
We compute all the tree-level contributions to the Wilson coefficients of the dimension-six Standard-Model effective theory in ultraviolet completions with general scalar, spinor and vector field content and arbitrary interactions. No assumption about the renormalizability of the high-energy theory is made. This provides a complete ultraviolet/infrared dictionary at the classical level, which can be used to study the low-energy implications of any model of interest, and also to look for explicit completions consistent with low-energy data.
We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. Two different scenarios depending on whether the global U(1) symmetry is broken or not have been studied. In the unbroken phase, the decay of the complex singlet is protected by the global U(1) symmetry which leads to an ideal cold dark matter candidate. In the broken phase, we are able to provide a second Higgs at $554,rm{GeV}$. In addition, gauging the global U(1) symmetry, we can construct an asymptotically safe U(1) leptophobic model. We combine the notion of asymptotic safety with conformal symmetry and use the renormalization group equations as a bridge to connect UV boundary conditions and Electroweak/ TeV scale physics. We also provide a detailed example to show that these boundary conditions will lead to phenomenological signatures such as diboson excesses which could be tested at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا