No Arabic abstract
We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global $U(1)$ symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global $U(1)$ symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the models couplings and masses. We have found there exists a second Higgs boson with a mass of approximately $550,rm{GeV}$ that mixes with the known $125,rm{GeV}$ Higgs with a large mixing angle $sinthetaapprox 0.47$ consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass $720,rm{GeV}$ and an $830,rm{GeV}$ extra vector-like fermion $F$, which is able to address the $750,rm{GeV}$ LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.
We present a study of singlet-doublet vector-like leptonic dark matter (DM) in the framework of two Higgs doublet model (2HDM), where the dark sector is comprised of one doublet and one singlet vectorlike fermions (VLFs). The DM, that arises as an admixture of the neutral components of the VLFs, is stabilized by an imposed discrete symmetry $mathcal{Z}_2^{}$ . We test the viability of the model in the light of observations from PLANCK and recent limits on spin-independent direct detection experiments, and search for its possible collider signals. In addition, we also look for the stochastic gravitational wave (GW) signatures resulting from strong first order phase transition due to the presence of the second Higgs doublet. The model thus offers a viable parameter space for a stable DM candidate that can be probed from direct search, collider and GW experiments.
We consider generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal Standard Model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass $M_s>80 GeV$. However in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%--100% with $106 GeV<M_s<120 GeV$. However, when the higher-order effects needed for consistency with a $125 GeV$ Higgs mass are estimated, the abundance becomes 10%--80% for $80 GeV<M_s<96 GeV$, representing a significant decrease in the dark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the $M_s>80 GeV$ detection region of the next generation XENON experiment.
A minimal extension of the Standard Model (SM) by a vector-like fermion doublet and three right handed (RH) singlet neutrinos is proposed in order to explain dark matter and tiny neutrino mass simultaneously. The DM arises as a mixture of the neutral component of the fermion doublet and one of the RH neutrinos, both assumed to be odd under an imposed $mathcal{Z}_2$ symmetry. Being Majorana in nature, the DM escapes from $Z$-mediated direct search constraints to mark a significant difference from singlet-doublet Dirac DM. The other two $mathcal{Z}_2$ even heavy RH neutrinos give rise masses and mixing of light neutrinos via Type-I Seesaw mechanism. Relic density and direct search allowed parameter space for the model is investigated through detailed numerical scan.
We study the decay of a heavy Higgs boson into a light Higgs pair at one loop in the singlet extension of the Standard Model. To this purpose, we construct several renormalization schemes for the extended Higgs sector of the model. We apply these schemes to calculate the heavy-to-light Higgs decay width at next-to-leading order electroweak accuracy, and demonstrate that certain prescriptions lead to gauge-dependent results. We comprehensively examine how the NLO predictions depend on the relevant singlet model parameters, with emphasis on the trademark behavior of the quantum effects, and how these change under different renormalization schemes and a variable renormalization scale. Once all present constraints on the model are included, we find mild NLO corrections, typically of few percent, and with small theoretical uncertainties.
The link between the electroweak gauge boson masses and the Fermi constant via the muon lifetime measurement is instrumental for constraining and eventually pinning down new physics. We consider the simplest extension of the Standard Model with an additional real scalar SU(2)_L x U(1)_Y singlet and compute the electroweak precision parameter Delta r, along with the corresponding theoretical prediction for the W-boson mass. When confronted with the experimental W-boson mass measurement, our predictions impose limits on the singlet model parameter space. We identify regions where these correspond to the most stringent experimental constraints that are currently available.