No Arabic abstract
We present the 3.5-yr monitoring results of 225 GHz opacity at the summit of the Greenland ice sheet (Greenland Summit Camp) at an altitude of 3200 m using a tipping radiometer. We chose this site as our submillimeter telescope (Greenland Telescope; GLT) site, because its location offers favorable baselines to existing submillimeter telescopes for global-scale VLBI. The site shows a clear seasonal variation with the average opacity lower by a factor of two during winter. For the winter quartiles of 25% and 50%, the Greenland site is about 10%-30% worse than the ALMA or the South Pole sites. Estimated atmospheric transmission spectra in winter season are similar to the ALMA site at lower frequencies (<450 GHz), which are transparent enough to perform astronomical observations almost all of the winter time with opacities <0.5, but 10%-25% higher opacities at higher frequencies (>450 GHz) than those at the ALMA site. This is due to the lower altitude of the Greenland site. Nevertheless, half of the winter time at the Greenland site can be used for astronomical observations at frequencies between 450 GHz and 1000 GHz with opacities <1.2, and 10% of the time show >10% transmittance in the THz (1035 GHz, 1350 GHz, and 1500 GHz) windows. One major advantage of the Greenland site in winter is that there is no diurnal variation due to the polar night condition, and therefore the durations of low-opacity conditions are significantly longer than at the ALMA site. Opacities lower than 0.05 or 0.04 can continue for more than 100 hours. Such long stable opacity conditions do not occur as often even at the South Pole; it happens only for the opacity lower than 0.05. Since the opacity variation is directly related to the sky temperature (background) variation, the Greenland site is suitable for astronomical observations that need unusually stable sky background.
We report the latest results of 225 GHz atmospheric opacity measurements from two arctic sites; one on high coastal terrain near the Eureka weather station, on Ellesmere Island, Canada, and the other at the Summit Station near the peak of the Greenland icecap. This is a campaign to search for a site to deploy a new telescope for submillimeter Very Long Baseline Interferometry and THz astronomy in the northern hemisphere. Since 2011, we have obtained 3 months of winter data near Eureka, and about one year of data at the Summit Station. The results indicate that these sites offer a highly transparent atmosphere for observations in submillimeter wavelengths. The Summit Station is particularly excellent, and its zenith opacity at 225 GHz is statistically similar to the Atacama Large Milllimeter/submillimeter Array in Chile. In winter, the opacity at the Summit Station is even comparable to that observed at the South Pole.
The Greenland Telescope project has recently participated in an experiment to image the supermassive black hole shadow at the center of M87 using Very Long Baseline Interferometry technique in April of 2018. The antenna consists of the 12-m ALMA North American prototype antenna that was modified to support two auxiliary side containers and to withstand an extremely cold environment. The telescope is currently at Thule Air Base in Greenland with the long-term goal to move the telescope over the Greenland ice sheet to Summit Station. The GLT currently has a single cryostat which houses three dual polarization receivers that cover 84-96 GHz, 213-243 GHz and 271-377 GHz bands. A hydrogen maser frequency source in conjunction with high frequency synthesizers are used to generate the local oscillator references for the receivers. The intermediate frequency outputs of each receiver cover 4-8 GHz and are heterodyned to baseband for digitization within a set of ROACH-2 units then formatted for recording onto Mark-6 data recorders. A separate set of ROACH-2 units operating in parallel provides the function of auto-correlation for real-time spectral analysis. Due to the stringent instrumental stability requirements for interferometry a diagnostic test system was incorporated into the design. Tying all of the above equipment together is the fiber optic system designed to operate in a low temperature environment and scalable to accommodate a larger distance between the control module and telescope for Summit Station. A report on the progress of the above electronics instrumentation system will be provided.
We present a preliminary analysis of new high resolution radio observations of the nearby TeV blazar Markarian 421 (z=0.031). This study is part of an ambitious multifrequency campaign, with observations in sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). In this manuscript we consider only data obtained with the Very Long Baseline Array (VLBA) at seven epochs (one observation per month from January to July 2011) at 15 and 23.8 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. We identified 5-6 components which are consistent with being stationary during the 6-month period reported here. The aim is to try to shed light on questions such as the nature of radiating particles, the connection between radio and gamma-ray emission, the location of emitting regions and the origin of the flux variability.
This article presents the design of the Radio Neutrino Observatory Greenland (RNO-G) and discusses its scientific prospects. Using an array of radio sensors, RNO-G seeks to measure neutrinos above 10 PeV by exploiting the Askaryan effect in neutrino-induced cascades in ice. We discuss the experimental considerations that drive the design of RNO-G, present first measurements of the hardware that is to be deployed and discuss the projected sensitivity of the instrument. RNO-G will be the first production-scale radio detector for in-ice neutrino signals.
The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), SAOs main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI and single dish observations. Antenna reassembly at Summit Station should take place during the summer of 2018.