Do you want to publish a course? Click here

Electronics Instrumentation for the Greenland Telescope

59   0   0.0 ( 0 )
 Added by Derek Kubo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Greenland Telescope project has recently participated in an experiment to image the supermassive black hole shadow at the center of M87 using Very Long Baseline Interferometry technique in April of 2018. The antenna consists of the 12-m ALMA North American prototype antenna that was modified to support two auxiliary side containers and to withstand an extremely cold environment. The telescope is currently at Thule Air Base in Greenland with the long-term goal to move the telescope over the Greenland ice sheet to Summit Station. The GLT currently has a single cryostat which houses three dual polarization receivers that cover 84-96 GHz, 213-243 GHz and 271-377 GHz bands. A hydrogen maser frequency source in conjunction with high frequency synthesizers are used to generate the local oscillator references for the receivers. The intermediate frequency outputs of each receiver cover 4-8 GHz and are heterodyned to baseband for digitization within a set of ROACH-2 units then formatted for recording onto Mark-6 data recorders. A separate set of ROACH-2 units operating in parallel provides the function of auto-correlation for real-time spectral analysis. Due to the stringent instrumental stability requirements for interferometry a diagnostic test system was incorporated into the design. Tying all of the above equipment together is the fiber optic system designed to operate in a low temperature environment and scalable to accommodate a larger distance between the control module and telescope for Summit Station. A report on the progress of the above electronics instrumentation system will be provided.



rate research

Read More

Design and construction of the instruments for ESOs Extremely Large Telescope (ELT) began in 2015. We present here a brief overview of the status of the ELT Instrumentation Plan. Dedicated articles on each instrument are presented elsewhere this volume.
The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), SAOs main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI and single dish observations. Antenna reassembly at Summit Station should take place during the summer of 2018.
133 - Philippe Raffin 2016
Since the ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO), SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA) are working jointly to relocate the antenna to Greenland. This paper shows the status of the antenna retrofit and the work carried out after the recommissioning and subsequent disassembly of the antenna at the VLA has taken place. The next coming months will see the start of the antenna reassembly at Thule Air Base. These activities are expected to last until the fall of 2017 when commissioning should take place. In parallel, design, fabrication and testing of the last components are taking place in Taiwan.
(abridged) The Atacama Large Aperture Submillimeter Telescope (AtLAST) project aims to build a 50-m-class submm telescope with $>1^circ$ field of view, high in the Atacama Desert, providing fast and detailed mapping of the mm/submm sky. It will thus serve as a strong complement to existing facilities such as ALMA. ALMAs small field of view ($<15^{primeprime}$ at 350 GHz) limits its mapping speed for large surveys. Instead, a single dish with a large field of view such as the AtLAST concept can host large multi-element instruments that can more efficiently map large portions of the sky. Small aperture survey instruments (typically much smaller than $<3times$ the size of an interferometric array element) can mitigate this somewhat but lack the resolution for accurate recovery of source location and have small collecting areas. Furthermore, small aperture survey instruments do not provide sufficient overlap in the spatial scales they sample to provide a complete reconstruction of extended sources (i.e. the zero-spacing information is incomplete in $u,v$-space.) The heterodyne instrumentation for the AtLAST telescope that we consider here will take advantage of extensive developments in the past decade improving the performance and pixel count of heterodyne focal plane arrays. Such instrumentation, with higher pixel counts, has alredy begun to take advantage of integration in the focal planes to increase packaging efficiency over simply stacking modular mixer blocks in the focal plane. We extrapolate from the current state-of-the-art to present concept first-generation heterodyne designs for AtLAST.
A 12-m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) is to become one of the Very Long Baseline Interferometry (VLBI) stations at sub-millimeter (submm) regime, providing the longest baseline > 9,000 km to achieve an exceptional angular resolution of 20 micro arc sec at 350 GHz, which will enable us to resolve the shadow size of ~40 micro arc sec. The triangle with the longest baselines formed by the GLT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the Submillimeter Array (SMA) in Hawaii will play a key role for the M87 observations. We have been working on the image simulations based on realistic conditions for a better understanding of the possible observed images. In parallel, retrofitting of the telescope and the site developments are in progress. Based on three years of opacity monitoring at 225 GHz, our measurements indicate that the site is excellent for submm observations, comparable to the ALMA site. The GLT is also expected to make single-dish observations up to 1.5 THz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا