Do you want to publish a course? Click here

Geodesic completeness for Type~A surfaces

99   0   0.0 ( 0 )
 Added by Peter B. Gilkey
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesically complete, that some others admit an incomplete geodesic but model geodesically complete surfaces, and that there are also others which do not model any complete surface. Our main result provides a way of determining whether a given set of constant Christoffel symbols can model a complete surface.



rate research

Read More

We define the notion of geodesic completeness for semi-Riemannian metrics of low regularity in the framework of the geometric theory of generalized functions. We then show completeness of a wide class of impulsive gravitational wave space-times.
77 - E. Ebrahimi , S.M.B. Kashani , 2020
In this paper we investigate geodesic completeness of left-invariant Lorentzian metrics on a simple Lie group $G$ when there exists a left-invariant Killing vector field $Z$ on $G$. Among other results, it is proved that if $Z$ is timelike, or $G$ is strongly causal and $Z$ is lightlike, then the metric is complete. We then consider the special complex Lie group $SL_2(mathbb{C})$ in more details and show that the existence of a lightlike vector field $Z$ on it, implies geodesic completeness. We also consider the existence of a spacelike vector field $Z$ on $SL_2(mathbb{C})$ and provide an equivalent condition for the metric to be complete. This illustrates the complexity of the situation when $Z$ is spacelike.
We consider restrictions placed by geodesic completeness on spacetimes possessing a null parallel vector field, the so-called Brinkmann spacetimes. This class of spacetimes includes important idealized gravitational wave models in General Relativity, namely the plane-fronted waves with parallel rays, or pp-waves, which in turn have been intensely and fruitfully studied in the mathematical and physical literatures for over half a century. More concretely, we prove a restricted version of a conjectural analogue for Brinkmann spacetimes of a rigidity result obtained by M.T. Anderson for stationary spacetimes. We also highlight its relation with a long-standing 1962 conjecture by Ehlers and Kundt. Indeed, it turns out that the subclass of Brinkmann spacetimes we consider in our main theorem is enough to settle an important special case of the Ehlers-Kundt conjecture in terms of the well known class of Cahen-Wallach spaces.
Let $M$ be a differentiable manifold, $T_xM$ be its tangent space at $xin M$ and $TM={(x,y);xin M;y in T_xM}$ be its tangent bundle. A $C^0$-Finsler structure is a continuous function $F:TM rightarrow mathbb [0,infty)$ such that $F(x,cdot): T_xM rightarrow [0,infty)$ is an asymmetric norm. In this work we introduce the Pontryagin type $C^0$-Finsler structures, which are structures that satisfy the minimum requirements of Pontryagins maximum principle for the problem of minimizing paths. We define the extended geodesic field $mathcal E$ on the slit cotangent bundle $T^ast Mbackslash 0$ of $(M,F)$, which is a generalization of the geodesic spray of Finsler geometry. We study the case where $mathcal E$ is a locally Lipschitz vector field. We show some examples where the geodesics are more naturally represented by $mathcal E$ than by a similar structure on $TM$. Finally we show that the maximum of independent Finsler structures is a Pontryagin type $C^0$-Finsler structure where $mathcal E$ is a locally Lipschitz vector field.
100 - D. DAscanio , P. Gilkey , 2017
We examine the local geometry of affine surfaces which are locally symmetric. There are 6 non-isomorphic local geometries. We realize these examples as Type A, Type B, and Type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا