We examine the local geometry of affine surfaces which are locally symmetric. There are 6 non-isomorphic local geometries. We realize these examples as Type A, Type B, and Type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
We give a new short self-contained proof of the result of Opozda [B. Opozda, A classification of locally homogeneous connections on 2-dimensional manifolds, Differential Geom. Appl. 21 (2004), 173-198.] classifying the locally homogeneous torsion free affine surfaces and the extension to the case of surfaces with torsion due to Arias-Marco and Kowalski [T. Arias-Marco and O. Kowalski, Classification of locally homogeneous linear connections with arbitrary torsion on 2-dimensional manifolds, Monatsh. Math. 153 (2008), 1-18.]. Our approach rests on a direct analysis of the affine Killing equations and is quite different than the approaches taken previously in the literature.
This paper is devoted to the complete classification of space curves under affine transformations in the view of Cartans theorem. Spivak has introduced the method but has not found the invariants. Furthermore, for the first time, we propound a necessary and sufficient condition for the invariants. Then, we study the shapes of space curves with constant curvatures in detail and suggest their applications in physics, computer vision and image processing.
We analyze the moduli space of non-flat homogeneous affine connections on surfaces. For Type $mathcal{A}$ surfaces, we write down complete sets of invariants that determine the local isomorphism type depending on the rank of the Ricci tensor and examine the structure of the associated moduli space. For Type $mathcal{B}$ surfaces which are not Type $mathcal{A}$ we show the corresponding moduli space is a simply connected real analytic 4-dimensional manifold with second Betti number equal to $1$.
An affine manifold is said to be geodesically complete if all affine geodesics extend for all time. It is said to be affine Killing complete if the integral curves for any affine Killing vector field extend for all time. We use the solution space of the quasi-Einstein equation to examine these concepts in the setting of homogeneous affine surfaces.
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces $T_n=SO(n) backslash SL(n,R) /SL(n,Z)$ with $n>1$, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space $T_n$ and the way this family is approximated is reflected by the heights at which the ray rises in the cuspidal end. The only difference between the two types of approximation appearing in a Transference Theorem is that the height is measured with respect to different rays in $W$, a Weyl chamber in $T_n$. Thus the Transference Theorem is equivalent to a relation between the Busemann functions of two rays in $W$. This relation is easy to establish on $W$, because restricted to it the two Busemann functions become two linear forms. Since $T_n$ is at finite Hausdorff distance from $W$, the same relation is satisfied up to a bounded perturbation on the whole of $T_n$.