Do you want to publish a course? Click here

Geodesic completeness of some Lorentzian simple Lie groups

78   0   0.0 ( 0 )
 Added by Mohammad J. Vanaei
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we investigate geodesic completeness of left-invariant Lorentzian metrics on a simple Lie group $G$ when there exists a left-invariant Killing vector field $Z$ on $G$. Among other results, it is proved that if $Z$ is timelike, or $G$ is strongly causal and $Z$ is lightlike, then the metric is complete. We then consider the special complex Lie group $SL_2(mathbb{C})$ in more details and show that the existence of a lightlike vector field $Z$ on it, implies geodesic completeness. We also consider the existence of a spacelike vector field $Z$ on $SL_2(mathbb{C})$ and provide an equivalent condition for the metric to be complete. This illustrates the complexity of the situation when $Z$ is spacelike.



rate research

Read More

We define the notion of geodesic completeness for semi-Riemannian metrics of low regularity in the framework of the geometric theory of generalized functions. We then show completeness of a wide class of impulsive gravitational wave space-times.
We show that uniform lattices in some semi-simple groups (notably complex ones) admit Anosov surface subgroups. This result has a quantitative version: we introduce a notion, called $K$-Sullivan maps, which generalizes the notion of $K$-quasi-circles in hyperbolic geometry, and show in particular that Sullivan maps are Holder. Using this notion, we show a quantitative version of our surface subgroup theorem and in particular that one can obtain $K$-Sullivan limit maps, as close as one wants to smooth round circles. All these results use the coarse geometry of path of triangles in a certain flag manifold and we prove an analogue to the Morse Lemma for quasi-geodesics in that context.
Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesically complete, that some others admit an incomplete geodesic but model geodesically complete surfaces, and that there are also others which do not model any complete surface. Our main result provides a way of determining whether a given set of constant Christoffel symbols can model a complete surface.
164 - Zhiqi Chen , Ke Liang , Fuhai Zhu 2013
We call a metric $m$-quasi-Einstein if $Ric_X^m$, which replaces a gradient of a smooth function $f$ by a vector field $X$ in $m$-Bakry-Emery Ricci tensor, is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contains Ricci solitons. In this paper, we focus on left-invariant metrics on simple Lie groups. First, we prove that $X$ is a left-invariant Killing vector field if the metric on a compact simple Lie group is $m$-quasi-Einstein. Then we show that every compact simple Lie group admits non-trivial $m$-quasi-Einstein metrics except $SU(3)$, $E_8$ and $G_2$, and most of them admit infinitely many metrics. Naturally, the study on $m$-quasi-Einstein metrics can be extended to pseudo-Riemannian case. And we prove that every compact simple Lie group admits non-trivial $m$-quasi-Einstein Lorentzian metrics and most of them admit infinitely many metrics. Finally, we prove that some non-compact simple Lie groups admit infinitely many non-trivial $m$-quasi-Einstein Lorentzian metrics.
197 - Huibin Chen , Zhiqi Chen 2017
In the paper Einstein metrics on compact simple Lie groups attached to standard triples, the authors introduced the definition of standard triples and proved that every compact simple Lie group $G$ attached to a standard triple $(G,K,H)$ admits a left-invariant Einstein metric which is not naturally reductive except the standard triple $(Sp(4),2Sp(2),4Sp(1))$. For the triple $(Sp(4),2Sp(2),4Sp(1))$, we find there exists an involution pair of $sp(4)$ such that $4sp(1)$ is the fixed point of the pair, and then give the decomposition of $sp(4)$ as a direct sum of irreducible $ad(4sp(1))$-modules. But $Sp(4)/4Sp(1)$ is not a generalized Wallach space. Furthermore we give left-invariant Einstein metrics on $Sp(4)$ which are non-naturally reductive and $Ad(4Sp(1))$-invariant. For the general case $(Sp(2n_1n_2),2Sp(n_1n_2),2n_2Sp(n_1))$, there exist $2n_2-1$ involutions of $sp(2n_1n_2)$ such that $2n_2sp(n_1))$ is the fixed point of these $2n_2-1$ involutions, and it follows the decomposition of $sp(2n_1n_2)$ as a direct sum of irreducible $ad(2n_2sp(n_1))$-modules. In order to give new non-naturally reductive and $Ad(2n_2Sp(n_1)))$-invariant Einstein metrics on $Sp(2n_1n_2)$, we prove a general result, i.e. $Sp(2k+l)$ admits at least two non-naturally reductive Einstein metrics which are $Ad(Sp(k)timesSp(k)timesSp(l))$-invariant if $k<l$. It implies that every compact simple Lie group $Sp(n)$ for $ngeq 4$ admits at least $2[frac{n-1}{3}]$ non-naturally reductive left-invariant Einstein metrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا