Do you want to publish a course? Click here

Compressed Learning: A Deep Neural Network Approach

128   0   0.0 ( 0 )
 Added by Amir Adler
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Compressed Learning (CL) is a joint signal processing and machine learning framework for inference from a signal, using a small number of measurements obtained by linear projections of the signal. In this paper we present an end-to-end deep learning approach for CL, in which a network composed of fully-connected layers followed by convolutional layers perform the linear sensing and non-linear inference stages. During the training phase, the sensing matrix and the non-linear inference operator are jointly optimized, and the proposed approach outperforms state-of-the-art for the task of image classification. For example, at a sensing rate of 1% (only 8 measurements of 28 X 28 pixels images), the classification error for the MNIST handwritten digits dataset is 6.46% compared to 41.06% with state-of-the-art.



rate research

Read More

Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small number of measurements, obtained by linear projections of the signal. Block-based CS is a lightweight CS approach that is mostly suitable for processing very high-dimensional images and videos: it operates on local patches, employs a low-complexity reconstruction operator and requires significantly less memory to store the sensing matrix. In this paper we present a deep learning approach for block-based CS, in which a fully-connected network performs both the block-based linear sensing and non-linear reconstruction stages. During the training phase, the sensing matrix and the non-linear reconstruction operator are emph{jointly} optimized, and the proposed approach outperforms state-of-the-art both in terms of reconstruction quality and computation time. For example, at a 25% sensing rate the average PSNR advantage is 0.77dB and computation time is over 200-times faster.
268 - Liyan Sun , Zhiwen Fan , Yue Huang 2018
Compressed sensing for magnetic resonance imaging (CS-MRI) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. The goal is to minimize any structural errors in the reconstruction that could have a negative impact on its diagnostic quality. To this end, we propose a deep error correction network (DECN) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a convolutional neural network (CNN) to map the k-space data in a way that adjusts for the reconstruction error of the template image. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.
Compressed domain image classification performs classification directly on compressive measurements acquired from the single-pixel camera, bypassing the image reconstruction step. It is of great importance for extending high-speed object detection and classification beyond the visible spectrum in a cost-effective manner especially for resource-limited platforms. Previous neural network methods require training a dedicated neural network for each different measurement rate (MR), which is costly in computation and storage. In this work, we develop an efficient training scheme that provides a neural network with dynamic-rate property, where a single neural network is capable of classifying over any MR within the range of interest with a given sensing matrix. This training scheme uses only a few selected MRs for training and the trained neural network is valid over the full range of MRs of interest. We demonstrate the performance of the dynamic-rate neural network on datasets of MNIST, CIFAR-10, Fashion-MNIST, COIL-100, and show that it generates approximately equal performance at each MR as that of a single-rate neural network valid only for one MR. Robustness to noise of the dynamic-rate model is also demonstrated. The dynamic-rate training scheme can be regarded as a general approach compatible with different types of sensing matrices, various neural network architectures, and is a valuable step towards wider adoption of compressive inference techniques and other compressive sensing related tasks via neural networks.
Compressed sensing MRI is a classic inverse problem in the field of computational imaging, accelerating the MR imaging by measuring less k-space data. The deep neural network models provide the stronger representation ability and faster reconstruction compared with shallow optimization-based methods. However, in the existing deep-based CS-MRI models, the high-level semantic supervision information from massive segmentation-labels in MRI dataset is overlooked. In this paper, we proposed a segmentation-aware deep fusion network called SADFN for compressed sensing MRI. The multilayer feature aggregation (MLFA) method is introduced here to fuse all the features from different layers in the segmentation network. Then, the aggregated feature maps containing semantic information are provided to each layer in the reconstruction network with a feature fusion strategy. This guarantees the reconstruction network is aware of the different regions in the image it reconstructs, simplifying the function mapping. We prove the utility of the cross-layer and cross-task information fusion strategy by comparative study. Extensive experiments on brain segmentation benchmark MRBrainS validated that the proposed SADFN model achieves state-of-the-art accuracy in compressed sensing MRI. This paper provides a novel approach to guide the low-level visual task using the information from mid- or high-level task.
115 - Liyan Sun , Zhiwen Fan , Yue Huang 2018
In multi-contrast magnetic resonance imaging (MRI), compressed sensing theory can accelerate imaging by sampling fewer measurements within each contrast. The conventional optimization-based models suffer several limitations: strict assumption of shared sparse support, time-consuming optimization and shallow models with difficulties in encoding the rich patterns hiding in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of parameters. The feature sharing unit is combined with a data fidelity unit to comprise an inference block. These inference blocks are cascaded with dense connections, which allows for information transmission across different depths of the network efficiently. Our extensive experiments on various multi-contrast MRI datasets show that proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We show the improved reconstruction quality can bring great benefits for the later medical image analysis stage. Furthermore, the robustness of the proposed model to the non-registration environment shows its potential in real MRI applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا