Do you want to publish a course? Click here

Compressed Domain Image Classification Using a Dynamic-Rate Neural Network

68   0   0.0 ( 0 )
 Added by Yibo Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Compressed domain image classification performs classification directly on compressive measurements acquired from the single-pixel camera, bypassing the image reconstruction step. It is of great importance for extending high-speed object detection and classification beyond the visible spectrum in a cost-effective manner especially for resource-limited platforms. Previous neural network methods require training a dedicated neural network for each different measurement rate (MR), which is costly in computation and storage. In this work, we develop an efficient training scheme that provides a neural network with dynamic-rate property, where a single neural network is capable of classifying over any MR within the range of interest with a given sensing matrix. This training scheme uses only a few selected MRs for training and the trained neural network is valid over the full range of MRs of interest. We demonstrate the performance of the dynamic-rate neural network on datasets of MNIST, CIFAR-10, Fashion-MNIST, COIL-100, and show that it generates approximately equal performance at each MR as that of a single-rate neural network valid only for one MR. Robustness to noise of the dynamic-rate model is also demonstrated. The dynamic-rate training scheme can be regarded as a general approach compatible with different types of sensing matrices, various neural network architectures, and is a valuable step towards wider adoption of compressive inference techniques and other compressive sensing related tasks via neural networks.



rate research

Read More

Large-scale image retrieval benchmarks invariably consist of images from the Web. Many of these benchmarks are derived from online photo sharing networks, like Flickr, which in addition to hosting images also provide a highly interactive social community. Such communities generate rich metadata that can naturally be harnessed for image classification and retrieval. Here we study four popular benchmark datasets, extending them with social-network metadata, such as the groups to which each image belongs, the comment thread associated with the image, who uploaded it, their location, and their network of friends. Since these types of data are inherently relational, we propose a model that explicitly accounts for the interdependencies between images sharing common properties. We model the task as a binary labeling problem on a network, and use structured learning techniques to learn model parameters. We find that social-network metadata are useful in a variety of classification tasks, in many cases outperforming methods based on image content.
The conventional spatial convolution layers in the Convolutional Neural Networks (CNNs) are computationally expensive at the point where the training time could take days unless the number of layers, the number of training images or the size of the training images are reduced. The image size of 256x256 pixels is commonly used for most of the applications of CNN, but this image size is too small for applications like Diabetic Retinopathy (DR) classification where the image details are important for accurate classification. This research proposed Frequency Domain Convolution (FDC) and Frequency Domain Pooling (FDP) layers which were built with RFFT, kernel initialization strategy, convolution artifact removal and Channel Independent Convolution (CIC) to replace the conventional convolution and pooling layers. The FDC and FDP layers are used to build a Frequency Domain Convolutional Neural Network (FDCNN) to accelerate the training of large images for DR classification. The Full FDC layer is an extension of the FDC layer to allow direct use in conventional CNNs, it is also used to modify the VGG16 architecture. FDCNN is shown to be at least 54.21% faster and 70.74% more memory efficient compared to an equivalent CNN architecture. The modified VGG16 architecture with Full FDC layer is reported to achieve a shorter training time and a higher accuracy at 95.63% compared to the original VGG16 architecture for DR classification.
We propose a convolutional neural network (CNN) architecture for image classification based on subband decomposition of the image using wavelets. The proposed architecture decomposes the input image spectra into multiple critically sampled subbands, extracts features using a single CNN per subband, and finally, performs classification by combining the extracted features using a fully connected layer. Processing each of the subbands by an individual CNN, thereby limiting the learning scope of each CNN to a single subband, imposes a form of structural regularization. This provides better generalization capability as seen by the presented results. The proposed architecture achieves best-in-class performance in terms of total multiply-add-accumulator operations and nearly best-in-class performance in terms of total parameters required, yet it maintains competitive classification performance. We also show the proposed architecture is more robust than the regular full-band CNN to noise caused by weight-and-bias quantization and input quantization.
158 - Tung Nguyen , Kazuki Mori , 2016
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate content and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
Compressed Learning (CL) is a joint signal processing and machine learning framework for inference from a signal, using a small number of measurements obtained by linear projections of the signal. In this paper we present an end-to-end deep learning approach for CL, in which a network composed of fully-connected layers followed by convolutional layers perform the linear sensing and non-linear inference stages. During the training phase, the sensing matrix and the non-linear inference operator are jointly optimized, and the proposed approach outperforms state-of-the-art for the task of image classification. For example, at a sensing rate of 1% (only 8 measurements of 28 X 28 pixels images), the classification error for the MNIST handwritten digits dataset is 6.46% compared to 41.06% with state-of-the-art.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا