Do you want to publish a course? Click here

A Deep Error Correction Network for Compressed Sensing MRI

269   0   0.0 ( 0 )
 Added by Xinghao Ding
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Compressed sensing for magnetic resonance imaging (CS-MRI) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. The goal is to minimize any structural errors in the reconstruction that could have a negative impact on its diagnostic quality. To this end, we propose a deep error correction network (DECN) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a convolutional neural network (CNN) to map the k-space data in a way that adjusts for the reconstruction error of the template image. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.



rate research

Read More

Compressed sensing MRI is a classic inverse problem in the field of computational imaging, accelerating the MR imaging by measuring less k-space data. The deep neural network models provide the stronger representation ability and faster reconstruction compared with shallow optimization-based methods. However, in the existing deep-based CS-MRI models, the high-level semantic supervision information from massive segmentation-labels in MRI dataset is overlooked. In this paper, we proposed a segmentation-aware deep fusion network called SADFN for compressed sensing MRI. The multilayer feature aggregation (MLFA) method is introduced here to fuse all the features from different layers in the segmentation network. Then, the aggregated feature maps containing semantic information are provided to each layer in the reconstruction network with a feature fusion strategy. This guarantees the reconstruction network is aware of the different regions in the image it reconstructs, simplifying the function mapping. We prove the utility of the cross-layer and cross-task information fusion strategy by comparative study. Extensive experiments on brain segmentation benchmark MRBrainS validated that the proposed SADFN model achieves state-of-the-art accuracy in compressed sensing MRI. This paper provides a novel approach to guide the low-level visual task using the information from mid- or high-level task.
115 - Liyan Sun , Zhiwen Fan , Yue Huang 2018
In multi-contrast magnetic resonance imaging (MRI), compressed sensing theory can accelerate imaging by sampling fewer measurements within each contrast. The conventional optimization-based models suffer several limitations: strict assumption of shared sparse support, time-consuming optimization and shallow models with difficulties in encoding the rich patterns hiding in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of parameters. The feature sharing unit is combined with a data fidelity unit to comprise an inference block. These inference blocks are cascaded with dense connections, which allows for information transmission across different depths of the network efficiently. Our extensive experiments on various multi-contrast MRI datasets show that proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We show the improved reconstruction quality can bring great benefits for the later medical image analysis stage. Furthermore, the robustness of the proposed model to the non-registration environment shows its potential in real MRI applications.
Magnetic resonance image (MRI) reconstruction is a severely ill-posed linear inverse task demanding time and resource intensive computations that can substantially trade off {it accuracy} for {it speed} in real-time imaging. In addition, state-of-the-art compressed sensing (CS) analytics are not cognizant of the image {it diagnostic quality}. To cope with these challenges we put forth a novel CS framework that permeates benefits from generative adversarial networks (GAN) to train a (low-dimensional) manifold of diagnostic-quality MR images from historical patients. Leveraging a mixture of least-squares (LS) GANs and pixel-wise $ell_1$ cost, a deep residual network with skip connections is trained as the generator that learns to remove the {it aliasing} artifacts by projecting onto the manifold. LSGAN learns the texture details, while $ell_1$ controls the high-frequency noise. A multilayer convolutional neural network is then jointly trained based on diagnostic quality images to discriminate the projection quality. The test phase performs feed-forward propagation over the generator network that demands a very low computational overhead. Extensive evaluations are performed on a large contrast-enhanced MR dataset of pediatric patients. In particular, images rated based on expert radiologists corroborate that GANCS retrieves high contrast images with detailed texture relative to conventional CS, and pixel-wise schemes. In addition, it offers reconstruction under a few milliseconds, two orders of magnitude faster than state-of-the-art CS-MRI schemes.
180 - Yue Huang , John Paisley , Qin Lin 2013
We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRI) from highly undersampled k-space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and the patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov Chain Monte Carlo (MCMC) for the Bayesian model, and use the alternating direction method of multipliers (ADMM) for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.
Compressed sensing (CS) theory assures us that we can accurately reconstruct magnetic resonance images using fewer k-space measurements than the Nyquist sampling rate requires. In traditional CS-MRI inversion methods, the fact that the energy within the Fourier measurement domain is distributed non-uniformly is often neglected during reconstruction. As a result, more densely sampled low-frequency information tends to dominate penalization schemes for reconstructing MRI at the expense of high-frequency details. In this paper, we propose a new framework for CS-MRI inversion in which we decompose the observed k-space data into subspaces via sets of filters in a lossless way, and reconstruct the images in these various spaces individually using off-the-shelf algorithms. We then fuse the results to obtain the final reconstruction. In this way we are able to focus reconstruction on frequency information within the entire k-space more equally, preserving both high and low frequency details. We demonstrate that the proposed framework is competitive with state-of-the-art methods in CS-MRI in terms of quantitative performance, and often improves an algorithms results qualitatively compared with its direct application to k-space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا