No Arabic abstract
Context: The Initial Mass Function (IMF) plays a crucial role on galaxy evolution and its implications on star formation theory make it a milestone for the next decade. It is in the intermediate and high mass ranges where the uncertainties of the IMF are larger. This is a major subject of debate and analysis both for Galactic and extragalactic science. Aims: Our goal is to constrain the IMF of the Galactic thin disc population using both Galactic Classical Cepheids and Tycho-2 data. Methods: For the first time the Besanc{c}on Galaxy Model (BGM) has been used to characterise the Galactic population of the Classical Cepheids. We have modified the age configuration in the youngest populations of the BGM thin disc model to avoid artificial discontinuities in the age distribution of the simulated Cepheids. Three statistical methods, optimized for different mass ranges, have been developed and applied to search for the best IMF that fits the observations. This strategy allows us to quantify variations in the Star Formation History (SFH), the stellar density at Sun position and the thin disc radial scale length. A rigorous treatment of unresolved multiple stellar systems has been undertaken adopting a spatial resolution according to the catalogues used. Results: For intermediate masses, our study favours a composite field-star IMF slope of $alpha=3.2$ for the local thin disc, excluding flatter values such as the Salpeter IMF ($alpha=2.35$). Moreover, a constant Star Formation History is definitively excluded, the three statistical methods considered here show that it is inconsistent with the observational data. Conclusions: Using field stars and Galactic Classical Cepheids, we have found, above $1M_odot$, an IMF steeper than the canonical stellar IMF of associations and young clusters. This result is consistent with the predictions of the Integrated Galactic IMF.
We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the star formation rate in a galaxy can be expressed as the product of the IMF, $psi (m)$, which is a smooth function of mass $m$ (in units of msun), and a time- and space-dependent total rate of star formation per unit area of galactic disk. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope $gamma$, the high-mass slope $-Gamma$, the characteristic mass $m_{ch}$ (which is close to the mass $m_{rm peak}$ at which the IMF turns over), and the lower and upper limits on the mass, $m_l$ (taken to be 0.004) and $m_u$ (taken to be 120). The star formation rate in terms of number of stars per unit area of galactic disk per unit logarithmic mass interval, is proportional to $m^{-Gamma} left{1-expleft[{-(m/m_{ch})^{gamma +Gamma}}right]right}$, where $cal N_*$ is the number of stars, $m_l<m<m_u$ is the range of stellar masses. The values of $gamma$ and $emch$ are derived from two integral constraints: i) the ratio of the number density of stars in the range $m=0.1-0.6$ to that in the range $m=0.6-0.8$ as inferred from the mass distribution of field stars in the local neighborhood, and ii) the ratio of the number of stars in the range $m=0.08 - 1$ to the number of brown dwarfs in the range $m=0.03-0.08$ in young clusters. The IMF satisfying the above constraints is characterized by the parameters $gamma=0.51$ and $emch=0.35$ (which corresponds to $m_{rm peak}=0.27$). This IMF agrees quite well with the Chabrier (2005) IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses $< 0.03, M_odot$; we also compare with other IMFs in current use.
Exoplanets form in protoplanetary accretion discs. The total protoplanetary disc mass is the most fundamental parameter, since it sets the mass budget for planet formation. Although observations with the Atacama Large Millimeter/Submillimeter array (ALMA) have dramatically increased our understanding of these discs, total protoplanetary disc mass remains difficult to measure. If a disc is sufficiency massive ($gtrsim$ 10% of the host star mass), it can excite gravitational instability (GI). Recently, it has been revealed that GI leaves kinematic imprints of its presence known as the ``GI Wiggle. In this work, we use numerical simulations to empirically determine an approximately linear relationship between the amplitude of the wiggle and the host disc-to-star mass ratio, and show that measurements of the amplitude are possible with the spatial and spectral capabilities of ALMA. These measurements can therefore be used to constrain disc-to-star mass ratio.
We present an updated three dimensional map of the Milky Way based on a sample of 2431 classical Cepheid variable stars, supplemented with about 200 newly detected classical Cepheids from the OGLE survey. The new objects were discovered as a result of a dedicated observing campaign of the ~280 square degree extension of the OGLE footprint of the Galactic disk during 2018-2019 observing seasons. These regions cover the main part of the northern Galactic warp that has been deficient in Cepheids so far. We use direct distances to the sample of over 2390 classical Cepheids to model the distribution of the young stellar population in the Milky Way and recalculate the parameters of the Galactic disk warp. Our data show that its northern part is very prominent and its amplitude is ~10% larger than that of the southern part. By combining Gaia astrometric data with the Galactic rotation curve and distances to Cepheids from our sample, we construct a map of the vertical component of the velocity vector for all Cepheids in the Milky Way disk. We find large-scale vertical motions with amplitudes of 10-20 km/s, such that Cepheids located in the northern warp exhibit large positive vertical velocity (toward the north Galactic pole), whereas those in the southern warp - negative vertical velocity (toward the south Galactic pole).
There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models.
Using Hubble Space Telescope (HST) ACS/WFC data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended HI disc. These observations reveal an elliptical distribution of red giant branch stars, and a clumpy distribution of main-sequence stars that correlate with the HI gas distribution. We constrain the upper-end initial mass function (IMF) and determine the star formation law (SFL) in this field, using the observed main-sequence stars and an assumed constant star formation rate. Previously published H{alpha} observations of the field, which show one faint HII region, are used to provide further constraints on the IMF. We find that the main-sequence luminosity function analysis alone results in a best-fitting IMF with a power-law slope {alpha}=-2.85 and upper-mass limit M$_rm{u}$ = 60 M$_odot$. However, if we assume that all H{alpha} emission is confined to HII regions then the upper-mass limit is restricted to M$_rm{u}$ $le$20 M$_odot$. For the luminosity function fit to be correct we have to discount the H{alpha} observations implying significant diffuse ionized gas or escaping ionizing photons. Combining the HST photometry with HI imaging we find the SFL has a power law index $N=1.53 pm 0.21$. Applying these results to the entire outer HI disc indicates that it contributes 11--28% of the total recent star formation in NGC 2915, depending on whether the IMF is constant within the disc or varies from the centre to the outer region.