Do you want to publish a course? Click here

Constraining protoplanetary disc mass using the GI wiggle

91   0   0.0 ( 0 )
 Added by Jason Terry
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exoplanets form in protoplanetary accretion discs. The total protoplanetary disc mass is the most fundamental parameter, since it sets the mass budget for planet formation. Although observations with the Atacama Large Millimeter/Submillimeter array (ALMA) have dramatically increased our understanding of these discs, total protoplanetary disc mass remains difficult to measure. If a disc is sufficiency massive ($gtrsim$ 10% of the host star mass), it can excite gravitational instability (GI). Recently, it has been revealed that GI leaves kinematic imprints of its presence known as the ``GI Wiggle. In this work, we use numerical simulations to empirically determine an approximately linear relationship between the amplitude of the wiggle and the host disc-to-star mass ratio, and show that measurements of the amplitude are possible with the spatial and spectral capabilities of ALMA. These measurements can therefore be used to constrain disc-to-star mass ratio.

rate research

Read More

It is likely that young protostellar discs undergo a self-gravitating phase. Such systems are characterised by the presence of a spiral pattern that can be either in a quasi-steady state or in a non-linear unstable condition. This spiral wave affects both the gas dynamics and kinematics, resulting in deviations from the Keplerian rotation. Recently, a lot of attention has been devoted to kinematic studies of planet forming environments, and we are now able to measure even small perturbations of velocity field thanks to high spatial and spectral resolution observations of protostellar discs. In this work, we investigate the kinematic signatures of gravitational instability: we perform an analytical study of the linear response of a self-gravitating disc to a spiral-like perturbation, focusing our attention on the velocity field perturbations. We show that unstable discs have clear kinematic imprints into the gas component across the entire disc extent, due to the GI spiral wave perturbation, resulting in deviations from Keplerian rotation. The shape of these signatures depends on several parameters, but they are significantly affected by the cooling factor: by detecting these features, we can put constraints on protoplanetary discs cooling.
58 - R. Mor 2016
Context: The Initial Mass Function (IMF) plays a crucial role on galaxy evolution and its implications on star formation theory make it a milestone for the next decade. It is in the intermediate and high mass ranges where the uncertainties of the IMF are larger. This is a major subject of debate and analysis both for Galactic and extragalactic science. Aims: Our goal is to constrain the IMF of the Galactic thin disc population using both Galactic Classical Cepheids and Tycho-2 data. Methods: For the first time the Besanc{c}on Galaxy Model (BGM) has been used to characterise the Galactic population of the Classical Cepheids. We have modified the age configuration in the youngest populations of the BGM thin disc model to avoid artificial discontinuities in the age distribution of the simulated Cepheids. Three statistical methods, optimized for different mass ranges, have been developed and applied to search for the best IMF that fits the observations. This strategy allows us to quantify variations in the Star Formation History (SFH), the stellar density at Sun position and the thin disc radial scale length. A rigorous treatment of unresolved multiple stellar systems has been undertaken adopting a spatial resolution according to the catalogues used. Results: For intermediate masses, our study favours a composite field-star IMF slope of $alpha=3.2$ for the local thin disc, excluding flatter values such as the Salpeter IMF ($alpha=2.35$). Moreover, a constant Star Formation History is definitively excluded, the three statistical methods considered here show that it is inconsistent with the observational data. Conclusions: Using field stars and Galactic Classical Cepheids, we have found, above $1M_odot$, an IMF steeper than the canonical stellar IMF of associations and young clusters. This result is consistent with the predictions of the Integrated Galactic IMF.
Recent observations of protoplanetary discs reveal disc substructures potentially caused by embedded planets. We investigate how the gas surface density in discs changes the observed morphology in scattered light and dust continuum emission. Assuming that disc substructures are due to embedded protoplanets, we combine hydrodynamical modelling with radiative transfer simulations of dusty protoplanetary discs hosting planets. The response of different dust species to the gravitational perturbation induced by a planet depends on the drag stopping time - a function of the generally unknown local gas density. Small dust grains, being stuck to the gas, show spirals. Larger grains decouple, showing progressively more axisymmetric (ring-like) substructure as decoupling increases with grain size or with the inverse of the gas disc mass. We show that simultaneous modelling of scattered light and dust continuum emission is able to constrain the Stokes number, ${rm St}$. Hence, if the dust properties are known, this constrains the local gas surface density, $Sigma_{rm gas}$, at the location of the structure, and hence the total gas mass. In particular, we found that observing ring-like structures in mm-emitting grains requires ${rm St} gtrsim 0.4$ and therefore $Sigma_{rm gas} lesssim 0.4,textrm{g/cm}^{2}$. We apply this idea to observed protoplanetary discs showing substructures both in scattered light and in the dust continuum.
The Protoplanetary Discussions conference --- held in Edinburgh, UK, from 7th --11th March 2016 --- included several open sessions led by participants. This paper reports on the discussions collectively concerned with the multiphysics modelling of protoplanetary discs, including the self-consistent calculation of gas and dust dynamics, radiative transfer and chemistry. After a short introduction to each of these disciplines in isolation, we identify a series of burning questions and grand challenges associated with their continuing development and integration. We then discuss potential pathways towards solving these challenges, grouped by strategical, technical and collaborative developments. This paper is not intended to be a review, but rather to motivate and direct future research and collaboration across typically distinct fields based on textit{community driven input}, to encourage further progress in our understanding of circumstellar and protoplanetary discs.
Circumstellar discs may become warped or broken into distinct planes if there is a stellar or planetary companion with an orbit that is misaligned with respect to the disc. There is mounting observational evidence for protoplanetary discs with misaligned inner discs and warps that may be caused by such interactions with a previously undetected companion, giving us a tantalising indication of possible planets forming there. Hydrodynamical and radiative transfer models indicate that the temperature varies azimuthally in warped discs due to the variable angle at which the disc surface faces the star and this impacts the disc chemistry. We perform chemical modelling based on a hydrodynamical model of a protoplanetary disc with an embedded planet orbiting at a 12$^{circ}$ inclination to the disc. Even for this small misalignment, abundances of species including CO and HCO$^+$ vary azimuthally and this results in detectable azimuthal variations in submillimetre line emission. Azimuthal variations in line emission may therefore indicate the presence of an unseen embedded companion. Nonaxisymmetric chemical abundances should be considered when interpreting molecular line maps of warped or shadowed protoplanetary discs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا