Do you want to publish a course? Click here

On the effects of the Initial Mass Function on Galactic chemical enrichment

131   0   0.0 ( 0 )
 Added by Sabyasachi Goswami
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models.



rate research

Read More

207 - Belinda Damian 2021
In the star formation process, the vital impact of environmental factors such as feedback from massive stars and stellar density on the form of the initial mass function (IMF) at low-mass end is yet to be understood. Hence a systematic, highly sensitive observational analysis of a sample of regions under diverse environmental conditions is essential. We analyse the IMF of eight young clusters ($<$5 Myr), namely IC1848-West, IC1848-East, NGC 1893, NGC 2244, NGC 2362, NGC 6611, Stock 8 and Cygnus OB2, which are located at the Galactocentric distance ($R_g$) range $sim$6-12 kpc along with nearby cluster IC348 using deep near-IR photometry and Gaia DR2. These clusters are embedded in massive stellar environments of radiation strength $log(L_{FUV}/L_{odot})$ $sim$2.6 to 6.8, $log(L_{EUV})$ $sim$42.2 to 50.85 photons/s, with stellar density in the range of $sim$170 - 1220 stars/pc$^2$. After structural analysis and field decontamination we obtain an unbiased, uniformly sensitive sample of pre-main-sequence members of the clusters down to brown-dwarf regime. The lognormal fit to the IMF of nine clusters gives the mean characteristic mass ($m_c$) and $sigma$ of 0.32$pm$0.02 $M_odot$ and 0.47$pm$0.02, respectively. We compare the IMF with that of low- and high-mass clusters across the Milky Way. We also check for any systematic variation with respect to the radiation field strength, stellar density as well with $R_g$. We conclude that there is no strong evidence for environmental effect in the underlying form of the IMF of these clusters.
We present an update to the chemical enrichment component of the smoothed-particle hydrodynamics model for galaxy formation presented in Scannapieco et al. (2005) in order to address the needs of modelling galactic chemical evolution in realistic cosmological environments. Attribution of the galaxy-scale abundance patterns to individual enrichment mechanisms such as the winds from asymptotic giant branch (AGB) stars or the presence of a prompt fraction of Type Ia supernovae is complicated by the interaction between them and gas cooling, subsequent star formation and gas ejection. In this work we address the resulting degeneracies by extending our implementation to a suite of mechanisms that encompasses different IMFs, models for yields from the aforementioned stars, models for the prompt component of the delay-time-distribution (DTDs) for Type Ia SNe and metallicity-dependent gas cooling rates, and then applying these to both isolated initial conditions and cosmological hydrodynamical zoom simulations. We find DTDs with a large prompt fraction (such as the bimodal and power-law models) have, at z=0, similar abundance patterns compared to the low-prompt component time distributions (uniform or wide Gaussian models). However, some differences appear, such as the former having systematically higher [X/Fe] ratios and narrower [O/Fe] distributions compared to the latter, and a distinct evolution of the [Fe/H] abundance.
121 - A. Calamida 2015
We have derived the Galactic bulge initial mass function of the SWEEPS field in the mass range 0.15 $< M/M_{odot}<$ 1.0, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, F814W $sim$ 26 mag, with a proper-motion accuracy better than 0.5 mas/yr. This allowed us to determine the initial mass function of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge initial mass function can be fitted with two power laws with a break at M $sim$ 0.56 $M_{odot}$, the slope being steeper ($alpha$ = -2.41$pm$0.50) for the higher masses, and shallower ($alpha$ = -1.25$pm$0.20) for the lower masses. In the high-mass range, our derived mass function agrees well with the mass function derived for other regions of the bulge. In the low-mass range however, our mass function is slightly shallower, which suggests that separating the disk and bulge components is particularly important in the low-mass range. The slope of the bulge mass function is also similar to the slope of the mass function derived for the disk in the high-mass regime, but the bulge mass function is slightly steeper in the low-mass regime. We used our new mass function to derive stellar M/L values for the Galactic bulge and we obtained 2.1 $<M/L_{F814W}<$ 2.4 and 3.1 $< M/L_{F606W}<$ 3.6 according to different assumptions on the slope of the IMF for masses larger than 1 $M_{odot}$.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
We test the hypothesis that the initial mass function (IMF) is determined by the density probability distribution function (PDF) produced by supersonic turbulence. We compare 14 simulations of star cluster formation in 50 solar mass molecular cloud cores where the initial turbulence contains either purely solenoidal or purely compressive modes, in each case resolving fragmentation to the opacity limit to determine the resultant IMF. We find statistically indistinguishable IMFs between the two sets of calculations, despite a factor of two difference in the star formation rate and in the standard deviation of $log(rho)$. This suggests that the density PDF, while determining the star formation rate, is not the primary driver of the IMF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا