No Arabic abstract
During the scanning observations of the Galactic Center region in August - September 2016 we detected the new outburst of the historical X-ray nova GRS 1739-278, the black hole candidate LMXB system. In this letter we present results of INTEGRAL and Swift-XRT observations taken during the outburst. In hard X-ray band (20-60 keV) the flux from the source raised from $sim$11 to $sim$30 mCrab between 3 and 14 of September. For nearly 8 days the source has been observed at this flux level and then faded to $sim$15 mCrab. The broadband quasi-simultaneous spectrum obtained during the outburst is well described by the absorbed powerlaw with the photon index $Gamma=1.86pm0.07$ in broad energy range 0.5-150 keV, with absorption corresponding to ${N_{H}}=2.3times10^{22}$ cm$^{-2}$ assuming solar abundance. Based on this we can conclude that the source was in the low/hard state. From the lightcurve and spectra we propose that this outburst was `failed, i.e. amount of accreted matter was not sufficient to achieve the high/soft spectral state with dominant soft blackbody component as seen in normal outbursts of black hole candidates.
We report on the X-ray spectral analysis and time evolution of GRS 1739$-$278 during its 2014 outburst based on MAXI/GSC and Swift/XRT observations. Over the course of the outburst, a transition from the low/hard state to the high/soft state and then back to the low/hard state was seen. During the high/soft state, the innermost disk temperature mildly decreased, while the innermost radius estimated with the multi-color disk model remained constant at $sim18 (frac{D}{8.5 mathrm{kpc}}) {(frac{cos i}{cos 30^{circ}})}^{-1/2}$ km, where $D$ is the source distance and $i$ is the inclination of observation. This small innermost radius of the accretion disk suggests that the central object is more likely to be a Kerr black hole rather than a Schwardzschild black hole. Applying a relativistic disk emission model to the high/soft state spectra, a mass upper limit of $18.3 mathrm{M_{odot}}$ was obtained based on the inclination limit $i<60^{circ}$ for an assumed distance of 8.5 kpc. Using the empirical relation of the transition luminosity to the Eddington limit, the mass is constrained to $4.0-18.3 mathrm{M_{odot}}$ for the same distance. The mass can be further constrained to be no larger than $9.5 mathrm{M_{odot}}$ by adopting the constraints based on the fits to the NuSTAR spectra with relativistically blurred disk reflection models (Miller et al. 2015).
We present a detailed spectral analysis of XMM-Newton and NuSTAR observations of the accreting transient black hole GRS 1739-278 during a very faint low hard state at ~0.02% of the Eddington luminosity (for a distance of 8.5 kpc and a mass of 10 M_sun ). The broad-band X-ray spectrum between 0.5-60 keV can be well-described by a power law continuum with an exponential cutoff. The continuum is unusually hard for such a low luminosity, with a photon index of Gamma = 1.39 +/- 0.04. We find evidence for an additional reflection component from an optically thick accretion disk at the 98% likelihood level. The reflection fraction is low with R_refl = 0.043(+0.033,-0.023). In combination with measurements of the spin and inclination parameters made with NuSTAR during a brighter hard state by Miller and co-workers, we seek to constrain the accretion disk geometry. Depending on the assumed emissivity profile of the accretion disk, we find a truncation radius of 15-35 Rg (5-12 R_ISCO ) at the 90% confidence limit. These values depend strongly on the assumptions and we discuss possible systematic uncertainties.
Nova SMC 2016 has been the most luminous nova known in the direction of the Magellanic Clouds. It turned into a very luminous supersoft X-ray source between day 16 and 28 after the optical maximum. We observed it with Chandra, the HRC-S camera and the Low Energy Transmission Grating (LETG) on 2016 November and 2017 January (days 39 and 88 after optical maximum), and with XMM-Newton on 2016 December (day 75). We detected the compact white dwarf (WD) spectrum as a luminous supersoft X-ray continuum with deep absorption features of carbon, nitrogen, magnesium, calcium, probably argon and sulfur on day 39, and oxygen, nitrogen and carbon on days 75 and 88. The spectral features attributed to the WD atmosphere are all blue-shifted, by about 1800 km/s on day 39 and up to 2100 km/s in the following observations. Spectral lines attributed to low ionization potential transitions in the interstellar medium are also observed. Assuming the distance of the Small Magellanic Cloud, the bolometric luminosity exceeded Eddington level for at least three months. A preliminary analysis with atmospheric models indicates effective temperature around 700,000 K on day 39, peaking at the later dates in the 850,000-900,000 K range, as expected for a 1.25 m(sol) WD. We suggest a possible classification as an oxygen-neon WD, but more precise modeling is needed to accurately determine the abundances. The X-ray light curves show large, aperiodic ux variability, not associated with spectral variability. We detected red noise, but did not find periodic or quasi-periodic modulations.
In $2016-17$, the Galactic transient black hole candidate GRS 1716-249 exhibited an outburst event after a long period of quiescence of almost 23 years. The source remained in the outbursting phase for $sim 9$ months. We study the spectral and temporal properties of the source during this outburst using archival data from four astronomy satellites, namely MAXI, Swift, NuSTAR and AstroSat. Initial spectral analysis is done using combined disk black body and power-law models. For a better understanding of the accretion flow properties, we studied spectra with the physical two component advective flow (TCAF) model. Accretion flow parameters are extracted directly from the spectral fits with the TCAF model. Low frequency quasi-periodic oscillations are also observed in the Swift/XRT and AstroSat/LAXPC data. From the nature of the variation of the spectral and temporal properties, we find the source remains in hard state during the entire outburst. It never had a transition to other states which makes this event a `failed outburst. An absence of the softer spectral states is consistent with the class of short orbital period objects, where the source belongs to. From the spectral fit, we also estimate the probable mass of GRS~1716-249 to be in the range of $4.50-5.93 M_odot$ or $5.02^{+0.91}_{-0.52} M_odot$.
On 2016 July 30 (MJD 57599), observations of the Small Magellanic Cloud by Swift/XRT found an increase in X-ray counts coming from a position consistent with the Be/X-ray binary pulsar SMC X-3. Follow-up observations on 2016 August 3 (MJD 57603) and 2016 August 10 (MJD 57610) revealed a rapidly increasing count rate and confirmed the onset of a new X-ray outburst from the system. Further monitoring by Swift began to uncover the enormity of the outburst, which peaked at 1.2 x 10^39 erg/s on 2016 August 25 (MJD 57625). The system then began a gradual decline in flux that was still continuing over 5 months after the initial detection. We explore the X-ray and optical behaviour of SMC X-3 between 2016 July 30 and 2016 December 18 during this super-Eddington outburst. We apply a binary model to the spin-period evolution that takes into account the complex accretion changes over the outburst, to solve for the orbital parameters. Our results show SMC X-3 to be a system with a moderately low eccentricity amongst the Be/X-ray binary systems and to have a dynamically determined orbital period statistically consistent with the prominent period measured in the OGLE optical light curve. Our optical and X-ray derived ephemerides show that the peak in optical flux occurs roughly 6 days after periastron. The measured increase in I-band flux from the counterpart during the outburst is reflected in the measured equivalent width of the H-alpha line emission, though the H-alpha emission itself seems variable on sub-day time-scales, possibly due to the NS interacting with an inhomogeneous disc.