Do you want to publish a course? Click here

The 2016 super-Eddington outburst of SMC X-3: X-ray and optical properties and system parameters

98   0   0.0 ( 0 )
 Added by Lee Townsend
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

On 2016 July 30 (MJD 57599), observations of the Small Magellanic Cloud by Swift/XRT found an increase in X-ray counts coming from a position consistent with the Be/X-ray binary pulsar SMC X-3. Follow-up observations on 2016 August 3 (MJD 57603) and 2016 August 10 (MJD 57610) revealed a rapidly increasing count rate and confirmed the onset of a new X-ray outburst from the system. Further monitoring by Swift began to uncover the enormity of the outburst, which peaked at 1.2 x 10^39 erg/s on 2016 August 25 (MJD 57625). The system then began a gradual decline in flux that was still continuing over 5 months after the initial detection. We explore the X-ray and optical behaviour of SMC X-3 between 2016 July 30 and 2016 December 18 during this super-Eddington outburst. We apply a binary model to the spin-period evolution that takes into account the complex accretion changes over the outburst, to solve for the orbital parameters. Our results show SMC X-3 to be a system with a moderately low eccentricity amongst the Be/X-ray binary systems and to have a dynamically determined orbital period statistically consistent with the prominent period measured in the OGLE optical light curve. Our optical and X-ray derived ephemerides show that the peak in optical flux occurs roughly 6 days after periastron. The measured increase in I-band flux from the counterpart during the outburst is reflected in the measured equivalent width of the H-alpha line emission, though the H-alpha emission itself seems variable on sub-day time-scales, possibly due to the NS interacting with an inhomogeneous disc.



rate research

Read More

113 - K. L. Li , C.-P Hu , L. C. C. Lin 2016
We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companions surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.
143 - M. J. Coe 2009
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud - SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9s. A search through earlier X-ray observations of the SMC reveal a previously unknown earlier detection of this system. Follow-up X-ray observations identified a new transient source within the error circle of the previous observations. An optical counterpart, AzV285, is proposed which reveals clear evidence for a 36.8d binary period.
Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultra-luminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with Lx > 1e40 erg/s). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ~10 Msun, or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive dataset in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the >150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime, and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind, and that Holmberg IX X-1 must primarily accrete via roche-lobe overflow.
The black-hole binary V404 Cyg entered the outburst phase in June 2015 after 26 years of X-ray quiescence, and with its behaviour broke the outburst evolution pattern typical of most black-hole binaries. We observed the entire outburst with the Swift satellite and performed time-resolved spectroscopy of its most active phase, obtaining over a thousand spectra with exposures from tens to hundreds of seconds. All the spectra can be fitted with an absorbed power law model, which most of the time required the presence of a partial covering. A blue-shifted iron-Kalpha line appears in 10% of the spectra together with the signature of high column densities, and about 20% of the spectra seem to show signatures of reflection. None of the spectra showed the unambiguous presence of soft disk-blackbody emission, while the observed bolometric flux exceeded the Eddington value in 3% of the spectra. Our results can be explained assuming that the inner part of the accretion flow is inflated into a slim disk that both hides the innermost (and brightest) regions of the flow, and produces a cold, clumpy, high-density outflow that introduces the high-absorption and fast spectral variability observed. We argue that the black hole in V404 Cyg might have been accreting erratically or even continuously at Eddington/Super-Eddington rates - thus sustaining a surrounding slim disk - while being partly or completely obscured by the inflated disk and its outflow. Hence, the largest flares produced by the source might not be accretion-driven events, but instead the effects of the unveiling of the extremely bright source hidden within the system.
It has been known for nearly three decades that the energy spectra of thermonuclear X-ray bursts are often well-fit by Planck functions with temperatures so high that they imply a super-Eddington radiative flux at the emitting surface, even during portions of bursts when there is no evidence of photospheric radius expansion. This apparent inconsistency is usually set aside by assuming that the flux is actually sub-Eddington and that the fitted temperature is so high because the spectrum has been distorted by the energy-dependent opacity of the atmosphere. Here we show that the spectra predicted by currently available conventional atmosphere models appear incompatible with the highest-precision measurements of burst spectra made using the Rossi X-ray Timing Explorer, such as during the 4U 1820-30 superburst and a long burst from GX 17+2. In contrast, these measurements are well-fit by Bose-Einstein spectra with high temperatures and modest chemical potentials. Such spectra are very similar to Planck spectra. They imply surface radiative fluxes more than a factor of three larger than the Eddington flux. We find that segments of many other bursts from many sources are well-fit by similar Bose-Einstein spectra, suggesting that the radiative flux at the emitting surface also exceeds the Eddington flux during these segments. We suggest that burst spectra can closely approximate Bose-Einstein spectra and have fluxes that exceed the Eddington flux because they are formed by Comptonization in an extended, low-density radiating gas supported by the outward radiation force and confined by a tangled magnetic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا