Do you want to publish a course? Click here

Accretion Flow Properties of GRS 1716-249 during its 2016-17 failed Outburst

105   0   0.0 ( 0 )
 Added by Dipak Debnath
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In $2016-17$, the Galactic transient black hole candidate GRS 1716-249 exhibited an outburst event after a long period of quiescence of almost 23 years. The source remained in the outbursting phase for $sim 9$ months. We study the spectral and temporal properties of the source during this outburst using archival data from four astronomy satellites, namely MAXI, Swift, NuSTAR and AstroSat. Initial spectral analysis is done using combined disk black body and power-law models. For a better understanding of the accretion flow properties, we studied spectra with the physical two component advective flow (TCAF) model. Accretion flow parameters are extracted directly from the spectral fits with the TCAF model. Low frequency quasi-periodic oscillations are also observed in the Swift/XRT and AstroSat/LAXPC data. From the nature of the variation of the spectral and temporal properties, we find the source remains in hard state during the entire outburst. It never had a transition to other states which makes this event a `failed outburst. An absence of the softer spectral states is consistent with the class of short orbital period objects, where the source belongs to. From the spectral fit, we also estimate the probable mass of GRS~1716-249 to be in the range of $4.50-5.93 M_odot$ or $5.02^{+0.91}_{-0.52} M_odot$.



rate research

Read More

106 - Sandeep K. Rout 2020
The origins of X-ray and radio emissions during an X-ray binary outburst are comparatively better understood than those of ultraviolet, optical and infrared radiation. This is because multiple competing mechanisms peak in these mid-energy ranges. Ascertaining the true emission mechanism and segregating the contribution of different mechanisms, if present, is important for correct understanding of the energetics of the system and hence its geometry. We have studied the multi-wavelength spectral energy distribution of the galactic X-ray binary GRS 1716-249 ranging from near infrared (0.0005 keV) to hard X-rays (120 keV) using observations from AstroSat, Swift, and Mount Abu Infrared Observatory. Broadband spectral fitting suggests that the irradiated accretion disk dominates emission in ultraviolet and optical regimes. The near infrared emission exhibits some excess than the prediction of the irradiated disk model, which is most likely due to Synchrotron emission from jets as suggested by radio emission. Irradiation of the inner disk by the hard X-ray emission from the Corona also plays a significant role in accounting for the soft X-ray emission.
We present a detailed analysis of the spectral properties of the black hole transient GRS 1716-249, based on the archival Swift and NuSTAR observations taken during the outburst of this source in 2016-2017. The first six NuSTAR observations show that the source is in a canonical hard state, where the spectrum is dominated by a power-law continuum. The seventh NuSTAR observation is taken during the intermediate state where both a disc thermal component and a power-law continuum are shown. All of our observations show a broad emission line feature in the iron band and a Compton hump above 10 keV. We model the broad band spectra using a high density disc reflection model, where the soft X-ray emission in the hard state is interpreted as part of the disc reflection component. This model enables us to constrain the disc density parameter of GRS 1716-249 in the range of $10^{19}$-$10^{20}$ cm$^{-3}$. We only obtain an upper limit of the inner disc radius using high density disc reflection spectroscopy and the results indicate either a non-truncated disc or a slightly truncated disc with $R_{rm in}<20r_{rm g}$.
We present optical spectroscopy obtained with the GTC, VLT and SALT telescopes during the decline of the 2016-2017 outburst of the black hole candidate GRS 1716-249 (Nova Oph 1993). Our 18-epoch data set spans 6 months and reveals that the observational properties of the main emission lines are very variable, even on time scales of a few hours. Several epochs are characterised by P-Cyg (as well as flat-top and asymmetric) profiles in the H$alpha$, H$beta$ and He II ($lambda$4686) emission lines, implying the presence of an accretion disc wind, which is likely hot and dense. The winds terminal velocity ($sim$2000 km s$^{-1}$) is similar to that observed in other black hole X-ray transients. These lines also show transient and sharp red-shifted absorptions, taking the form of inverted P-Cyg profiles. We argue that these profiles can be explained by the presence of infalling material at $sim$1300 km s$^{-1}$. We propose a failed wind scenario to explain this inflow and discuss other alternatives, such as obscuration produced by an accretion-related structure (e.g. the gas stream) in a high inclination system.
138 - N. La Palombara 2017
We report on the results of the $XMM-Newton$ observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux $f sim 10^{-10}$ erg cm$^{-2}$ s$^{-1}$, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period $P_{rm spin}$ = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disk provides a realiable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.
We present three simultaneous/quasi-simultaneous NuSTAR and Swift datasets of the black hole GRS 1716-249 in its hard intermediate state. The accretion disk in this state may have reached the innermost stable circular orbit, and the NuSTAR spectra show a broad relativistic iron line and a strong Compton hump. To measure the black hole spin, we construct a joint model consisting of a relativistic disk model kerrbb and a reflection model relxill, to fit the continuum and the reflection components, respectively. By applying this model to each dataset independently, a consistent result is obtained on the black hole spin and the disk inclination. The black hole spin is a* >~ 0.92, and the inclination angle (i) is around 40-50 degree, based on the measurements of all datasets. In the third dataset, a high black hole mass (M_BH) is strongly disfavored by the spectral fits. By unfreezing the black hole mass, we find a*>0.92, i=49.9^{+1.0}_{-1.3} degree and M_BH<8.0 Msun, at a 90% confidence level. Considering the lower limit derived from a previous optical constraint, M_BH is in a range of 4.9-8.0 Msun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا