No Arabic abstract
We study toric varieties over an arbitrary field with an emphasis on toric surfaces in the Merkurjev-Panin motivic category of K-motives. We explore the decomposition of certain toric varieties as K-motives into products of central simple algebras, the geometric and topological information encoded in these central simple algebras, and the relationship between the decomposition of the K-motives and the semiorthogonal decomposition of the derived categories. We obtain the information mentioned above for toric surfaces by explicitly classifying all minimal smooth projective toric surfaces using toric geometry.
The toric surfaces for octonions and related objects are discussed.
We study the birational properties of geometrically rational surfaces from a derived categorical point of view. In particular, we give a criterion for the rationality of a del Pezzo surface over an arbitrary field, namely, that its derived category decomposes into zero-dimensional components. For del Pezzo surfaces of degree at least 5, we construct explicit semiorthogonal decompositions by subcategories of modules over semisimple algebras arising as endomorphism algebras of vector bundles and we show how to retrieve information about the index of the surface from Brauer classes and Chern classes associated to these vector bundles.
In this note, we provide an axiomatic framework that characterizes the stable $infty$-categories that are module categories over a motivic spectrum. This is done by invoking Luries $infty$-categorical version of the Barr--Beck theorem. As an application, this gives an alternative approach to Rondigs and O stvae rs theorem relating Voevodskys motives with modules over motivic cohomology, and to Garkushas extension of Rondigs and O stvae rs result to general correspondence categories, including the category of Milnor-Witt correspondences in the sense of Calm`es and Fasel. We also extend these comparison results to regular Noetherian schemes over a field (after inverting the residue characteristic), following the methods of Cisinski and Deglise.
The Noether-Lefschetz theorem asserts that any curve in a very general surface $X$ in $mathbb P^3$ of degree $d geq 4$ is a restriction of a surface in the ambient space, that is, the Picard number of $X$ is $1$. We proved previously that under some conditions, which replace the condition $d geq 4$, a very general surface in a simplicial toric threefold $mathbb P_Sigma$ (with orbifold singularities) has the same Picard number as $mathbb P_Sigma$. Here we define the Noether-Lefschetz loci of quasi-smooth surfaces in $mathbb P_Sigma$ in a linear system of a Cartier ample divisor with respect to a (-1)-regular, respectively 0-regular, ample Cartier divisor, and give bounds on their codimensions. We also study the components of the Noether-Lefschetz loci which contain a line, defined as a rational curve that is minimal in a suitable sense.
The Milnor conjecture has been a driving force in the theory of quadratic forms over fields, guiding the development of the theory of cohomological invariants, ushering in the theory of motivic cohomology, and touching on questions ranging from sums of squares to the structure of absolute Galois groups. Here, we survey some recent work on generalizations of the Milnor conjecture to the context of schemes (mostly smooth varieties over fields of characteristic not 2). Surprisingly, a version of the Milnor conjecture fails to hold for certain smooth complete p-adic curves with no rational theta characteristic (this is the work of Parimala, Scharlau, and Sridharan). We explain how these examples fit into the larger context of an unramified Milnor question, offer a new approach to the question, and discuss new results in the case of curves over local fields and surfaces over finite fields.