Do you want to publish a course? Click here

Remarks on the Milnor conjecture over schemes

136   0   0.0 ( 0 )
 Added by Asher Auel
 Publication date 2011
  fields
and research's language is English
 Authors Asher Auel




Ask ChatGPT about the research

The Milnor conjecture has been a driving force in the theory of quadratic forms over fields, guiding the development of the theory of cohomological invariants, ushering in the theory of motivic cohomology, and touching on questions ranging from sums of squares to the structure of absolute Galois groups. Here, we survey some recent work on generalizations of the Milnor conjecture to the context of schemes (mostly smooth varieties over fields of characteristic not 2). Surprisingly, a version of the Milnor conjecture fails to hold for certain smooth complete p-adic curves with no rational theta characteristic (this is the work of Parimala, Scharlau, and Sridharan). We explain how these examples fit into the larger context of an unramified Milnor question, offer a new approach to the question, and discuss new results in the case of curves over local fields and surfaces over finite fields.



rate research

Read More

We demonstrate that a conjecture of Teh which relates the niveau filtration on Borel-Moore homology of real varieties and the images of generalized cycle maps from reduced Lawson homology is false. We show that the niveau filtration on reduced Lawson homology is trivial and construct an explicit class of examples for which Tehs conjecture fails by generalizing a result of Schulting. We compare various cycle maps and in particular we show that the Borel-Haeflinger cycle map naturally factors through the reduced Lawson homology cycle map.
In this short note, we simply collect some known results about representing algebraic cycles by various kind of nice (e.g. smooth, local complete intersection, products of local complete intersection) algebraic cycles, up to rational equivalence. We also add a few elementary and easy observations on these representation problems that we were not able to locate in the literature.
We introduce a notion of Milnor square of stable $infty$-categories and prove a criterion under which algebraic K-theory sends such a square to a cartesian square of spectra. We apply this to prove Milnor excision and proper excision theorems in the K-theory of algebraic stacks with affine diagonal and nice stabilizers. This yields a generalization of Weibels conjecture on the vanishing of negative K-groups for this class of stacks.
In this note, we provide an axiomatic framework that characterizes the stable $infty$-categories that are module categories over a motivic spectrum. This is done by invoking Luries $infty$-categorical version of the Barr--Beck theorem. As an application, this gives an alternative approach to Rondigs and O stvae rs theorem relating Voevodskys motives with modules over motivic cohomology, and to Garkushas extension of Rondigs and O stvae rs result to general correspondence categories, including the category of Milnor-Witt correspondences in the sense of Calm`es and Fasel. We also extend these comparison results to regular Noetherian schemes over a field (after inverting the residue characteristic), following the methods of Cisinski and Deglise.
310 - Baptiste Calm`es 2011
We define push-forwards for Witt groups of schemes along proper morphisms, using Grothendieck duality theory. This article is an application of results of the authors on tensor-triangulated closed categories to such structures on some derived categories of schemes together with classical derived functors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا