No Arabic abstract
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.
The Euclid space mission proposes to survey 15000 square degrees of the extragalactic sky during 6 years, with a step-and-stare technique. The scheduling of observation sequences is driven by the primary scientific objectives, spacecraft constraints, calibration requirements and physical properties of the sky. We present the current reference implementation of the Euclid survey and on-going work on survey optimization.
Euclid is an ESA Cosmic-Vision wide-field-space mission which is designed to explain the origin of the acceleration of Universe expansion. The mission will investigate at the same time two primary cosmological probes: Weak gravitational Lensing (WL) and Galaxy Clustering (in particular Baryon Acoustic Oscillations, BAO). The extreme precision requested on primary science objectives can only be achieved by observing a large number of galaxies distributed over the whole sky in order to probe the distribution of dark matter and galaxies at all scales. The extreme accuracy needed requires observation from space to limit all observational biases in the measurements. The definition of the Euclid survey, aiming at detecting billions of galaxies over 15 000 square degrees of the extragalactic sky, is a key parameter of the mission. It drives its scientific potential, its duration and the mass of the spacecraft. The construction of a Reference Survey derives from the high level science requirements for a Wide and a Deep survey. The definition of a main sequence of observations and the associated calibrations were indeed a major achievement of the Definition Phase. Implementation of this sequence demonstrated the feasibility of covering the requested area in less than 6 years while taking into account the overheads of space segment observing and maneuvering sequence. This reference mission will be used for sizing the spacecraft consumables needed for primary science. It will also set the framework for optimizing the time on the sky to fulfill the primary science and maximize the Euclid legacy.
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for submillisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultradense matter, strongly curved spacetimes, and intense magnetic fields. AXTARs main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2-50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of supermodules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study.
LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio $r$ to an uncertainty of $delta r=0.001$. In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4~K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors (MKID). In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2~$mu$K$cdot$arcmin over the frequency range 50 to 320~GHz.
The VIS instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large CCD array. Due to the harsh radiative environment outside the Earths atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will only be possible through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signal through a radiation-damaged CCD. The software is based on Shockley-Read-Hall theory, and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes three dimensional trap position, potential structure of the pixel, and multi-level clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding to make any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.