Do you want to publish a course? Click here

Euclid Space Mission: building the sky survey

172   0   0.0 ( 0 )
 Added by Ismael Tereno
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Euclid space mission proposes to survey 15000 square degrees of the extragalactic sky during 6 years, with a step-and-stare technique. The scheduling of observation sequences is driven by the primary scientific objectives, spacecraft constraints, calibration requirements and physical properties of the sky. We present the current reference implementation of the Euclid survey and on-going work on survey optimization.



rate research

Read More

Euclid is an ESA Cosmic-Vision wide-field-space mission which is designed to explain the origin of the acceleration of Universe expansion. The mission will investigate at the same time two primary cosmological probes: Weak gravitational Lensing (WL) and Galaxy Clustering (in particular Baryon Acoustic Oscillations, BAO). The extreme precision requested on primary science objectives can only be achieved by observing a large number of galaxies distributed over the whole sky in order to probe the distribution of dark matter and galaxies at all scales. The extreme accuracy needed requires observation from space to limit all observational biases in the measurements. The definition of the Euclid survey, aiming at detecting billions of galaxies over 15 000 square degrees of the extragalactic sky, is a key parameter of the mission. It drives its scientific potential, its duration and the mass of the spacecraft. The construction of a Reference Survey derives from the high level science requirements for a Wide and a Deep survey. The definition of a main sequence of observations and the associated calibrations were indeed a major achievement of the Definition Phase. Implementation of this sequence demonstrated the feasibility of covering the requested area in less than 6 years while taking into account the overheads of space segment observing and maneuvering sequence. This reference mission will be used for sizing the spacecraft consumables needed for primary science. It will also set the framework for optimizing the time on the sky to fulfill the primary science and maximize the Euclid legacy.
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.
This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable coverage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based approach guarantees solution feasibility. The approach is applied to the proposed SPHEREx mission, which includes coverage of the North and South Celestial Poles, Galactic plane, and a uniform coverage all-sky survey, and the ability to achieve science requirements demonstrated and visualized. Visualizations demonstrate the how the all-sky survey achieves its objectives.
240 - R. Chary , G. Helou , G. Brammer 2020
The Euclid, Rubin/LSST and Roman (WFIRST) projects will undertake flagship optical/near-infrared surveys in the next decade. By mapping thousands of square degrees of sky and covering the electromagnetic spectrum between 0.3 and 2 microns with sub-arcsec resolution, these projects will detect several tens of billions of sources, enable a wide range of astrophysical investigations by the astronomical community and provide unprecedented constraints on the nature of dark energy and dark matter. The ultimate cosmological, astrophysical and time-domain science yield from these missions will require joint survey processing (JSP) functionality at the pixel level that is outside the scope of the individual survey projects. The JSP effort scoped here serves two high-level objectives: 1) provide precise concordance multi-wavelength images and catalogs over the entire sky area where these surveys overlap, which accounts for source confusion and mismatched isophotes, and 2) provide a science platform to analyze concordance images and catalogs to enable a wide range of astrophysical science goals to be formulated and addressed by the research community. For the cost of about 200WY, JSP will allow the U.S. (and international) astronomical community to manipulate the flagship data sets and undertake innovative science investigations ranging from solar system object characterization, exoplanet detections, nearby galaxy rotation rates and dark matter properties, to epoch of reionization studies. It will also allow for the ultimate constraints on cosmological parameters and the nature of dark energy, with far smaller uncertainties and a better handle on systematics than by any one survey alone.
175 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy institutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا