No Arabic abstract
Chiral anomalies give rise to dissipationless transport phenomena such as the chiral magnetic and vortical effects. In these notes I review the theory from a quantum field theoretic, hydrodynamic and holographic perspective. A physical interpretation of the otherwise somewhat obscure concepts of consistent and covariant anomalies will be given. Vanishing of the CME in strict equilibrium will be connected to the boundary conditions in momentum space imposed by the regularization. The role of the gravitational anomaly will be explained. That it contributes to transport in an unexpectedly low order in the derivative expansion can be easiest understood via holography. Anomalous transport is supposed to play also a key role in understanding the electronics of advanced materials, the Dirac- and Weyl (semi)metals. Anomaly related phenomena such as negative magnetoresistivity, anomalous Hall effect, thermal anomalous Hall effect and Fermi arcs can be understood via anomalous transport. Finally I briefly review a holographic model of Weyl semimetal which allows to infer a new phenomenon related to the gravitational anomaly: the presence of odd viscosity.
A derivation of the anomaly-induced transport phenomena---the chiral magnetic/vortical effect---is revisited based on the imaginary-time formalism of quantum field theory. Considering the simplest anomalous system composed of a single Weyl fermion, we provide two derivations: perturbative (one-loop) evaluation of the anomalous transport coefficient, and the anomaly matching for the local thermodynamic functional.
In this paper, we discuss relativistic hydrodynamics for a massless Dirac fermion in $(2+1)$ dimensions, which has the parity anomaly -- a global t Hooft anomaly between $mathrm{U}(1)$ and parity symmetries. We investigate how hydrodynamics implements the party anomaly, particularly focusing on the transport phenomena at the boundary. Based on the parity anomaly matching and the second law of local thermodynamics, we find $mathrm{U}(1)$ and entropy currents localized at the boundary as well as the bulk anomalous current with vanishing divergence. These edge currents are similar to the $(1+1)$-dimensional chiral transports, but the coefficients are given by half of theirs. We also generalize our discussion to more general anomalies among multiple $mathrm{U}(1)$ symmetries and single $mathbb{Z}_2$ symmetry.
We study some of the transport processes which are specific to an ideal gas of relativistic Weyl fermions and relate the corresponding transport coefficients to various anomaly coefficients of the system. We propose that these transport processes can be thought of as arising from the continuous injection of chiral states and their subsequent adiabatic flow driven by vorticity. This in turn leads to an elegant expression relating the anomaly induced transport coefficients to the anomaly polynomial of the Ideal Weyl gas.
Higher-spin diffeomorphisms are to higher-order differential operators what diffeomorphisms are to vector fields. Their rigorous definition is a challenging mathematical problem which might predate a better understanding of higher-spin symmetries and interactions. Several yes-go and no-go results on higher-spin diffeomorphisms are collected from the mathematical literature in order to propose a generalisation of the algebra of differential operators on which higher-spin diffeomorphisms are well-defined.
We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the infrared asymmetry of the Green function. The same relation is obtained by a renormalization theory. The conserved charge contributes a compact scalar field to the effective action, from which we derive the many-body density of states and extract the charge compressibility. We compute the latter via three distinct numerical methods and obtain consistent results. Finally, we present a two dimensional bulk picture with free Dirac fermions for the zero temperature entropy.