No Arabic abstract
We describe numerous properties of the Sachdev-Ye-Kitaev model for complex fermions with $Ngg 1$ flavors and a global U(1) charge. We provide a general definition of the charge in the $(G,Sigma)$ formalism, and compute its universal relation to the infrared asymmetry of the Green function. The same relation is obtained by a renormalization theory. The conserved charge contributes a compact scalar field to the effective action, from which we derive the many-body density of states and extract the charge compressibility. We compute the latter via three distinct numerical methods and obtain consistent results. Finally, we present a two dimensional bulk picture with free Dirac fermions for the zero temperature entropy.
We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the $k$-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth and sixth order energy cumulants vanish in the limit of large number of particles $N to infty$ which is consistent with a Gaussian spectral density. However, for finite $N$, the tail of the average spectral density is well approximated by a semi-circle law. The specific heat coefficient, determined numerically from the low temperature behavior of the partition function, is consistent with the value obtained by previous analytical calculations. For energy scales of the order of the mean level spacing we show that level statistics are well described by random matrix theory. Due to the underlying Clifford algebra of the model, the universality class of the spectral correlations depends on $N$. For larger energy separations we identify an energy scale that grows with $N$, reminiscent of the Thouless energy in mesoscopic physics, where deviations from random matrix theory are observed. Our results are a further confirmation that the Sachdev-Ye-Kitaev model is quantum chaotic for all time scales. According to recent claims in the literature, this is an expected feature in field theories with a gravity-dual.
The Sachdev-Ye-Kitaev (SYK) model provides an uncommon example of a chaotic theory that can be analysed analytically. In the deep infrared limit, the original model has an emergent conformal (reparametrisation) symmetry that is broken both spontaneously and explicitly. The explicit breaking of this symmetry comes about due to pseudo-Nambu-Goldstone modes that are not exact zero-modes of the model. In this paper, we study a version of the model which preserves the reparametrisation symmetry at all length scales. We study the heavy-light correlation functions of the operators in the conformal spectrum of the theory. The three point functions of such operators allow us to demonstrate that matrix elements of primaries ${cal O}_n$ of the CFT$_1$ take the form postulated by the Eigenstate Thermalisation Hypothesis. We also discuss the implications of these results for the states in AdS$_2$ gravity dual.
We show analytically that the spectral density of the $q$-body Sachdeev-Ye-Kitaev (SYK) model agrees with that of Q-Hermite polynomials with Q a non-trivial function of $q ge 2$ and the number of Majorana fermions $N gg 1$. Numerical results, obtained by exact diagonalization, are in excellent agreement with the analytical spectral density even for relatively small $N sim 8$. For $N gg 1$ and not close to the edge of the spectrum, we find the macroscopic spectral density simplifies to $rho(E) sim exp[2arcsin^2(E/E_0)/log eta]$, where $eta$ is the suppression factor of the contribution of intersecting Wick contractions relative to nested contractions. This spectral density reproduces the known result for the free energy in the large $q$ and $N$ limit. In the infrared region, where the SYK model is believed to have a gravity-dual, the spectral density is given by $rho(E) sim sinh[2pi sqrt 2 sqrt{(1-E/E_0)/(-log eta)}]$. It therefore has a square-root edge, as in random matrix ensembles, followed by an exponential growth, a distinctive feature of black holes and also of low energy nuclear excitations. Results for level-statistics in this region confirm the agreement with random matrix theory. Physically this is a signature that, for sufficiently long times, the SYK model and its gravity dual evolve to a fully ergodic state whose dynamics only depends on the global symmetry of the system. Our results strongly suggest that random matrix correlations are a universal feature of quantum black holes and that the SYK model, combined with holography, may be relevant to model certain aspects of the nuclear dynamics.
We present a detailed quantitative analysis of spectral correlations in the Sachdev-Ye-Kitaev (SYK) model. We find that the deviations from universal Random Matrix Theory (RMT) behavior are due to a small number of long-wavelength fluctuations from one realization of the ensemble to the next one. These modes can be parameterized effectively in terms of Q-Hermite orthogonal polynomials, the main contribution being the scale fluctuations for which we give a simple estimate. Our numerical results for $N=32$ show that only the lowest eight polynomials are needed to eliminate the nonuniversal part of the spectral fluctuations. The covariance matrix of the coefficients of this expansion is obtained analytically from low-order double-trace moments. We evaluate the covariance matrix of the first six moments and find that it agrees with the numerics. We also analyze the spectral correlations using a nonlinear $sigma$-model, which is derived through a Fierz transformation, and evaluate the one and two-point spectral correlator to two-loop order. The wide correlator is given by the sum of the universal RMT result and corrections whose lowest-order term corresponds to scale fluctuations. However, the loop expansion of the $sigma$-model results in an ill-behaved expansion of the resolvent, and it gives universal RMT fluctuations not only for $q=4$ but also for the $q=2$ SYK model while the correct result in this case should have been Poisson statistics. We analyze the number variance and spectral form factor for $N=32$ and $q=4$ numerically. We show that the quadratic deviation of the number variance for large energies appears as a peak for small times in the spectral form factor. After eliminating the long-wavelength fluctuations, we find quantitative agreement with RMT up to an exponentially large number of level spacings or exponentially short times, respectively.
The Sachdev-Ye-Kitaev (SYK) model is a model of $q$ interacting fermions whose large N limit is dominated by melonic graphs. In this review we first present a diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs. Gross and Rosenhaus have then proposed a generalization of the SYK model which involves fermions with different flavors. In terms of Feynman graphs, these flavors can be seen as reminiscent of the colors used in random tensor theory. Applying modern tools from random tensors to such a colored SYK model, all leading and next-to-leading orders diagrams of the 2-point and 4-point functions in the large $N$ expansion can be identified. We then study the effect of non-Gaussian average over the random couplings in a complex, colored version of the SYK model. Using a Polchinski-like equation and random tensor Gaussian universality, we show that the effect of this non-Gaussian averaging leads to a modification of the variance of the Gaussian distribution of couplings at leading order in $N$. We then derive the form of the effective action to all orders.