No Arabic abstract
In this paper, we discuss relativistic hydrodynamics for a massless Dirac fermion in $(2+1)$ dimensions, which has the parity anomaly -- a global t Hooft anomaly between $mathrm{U}(1)$ and parity symmetries. We investigate how hydrodynamics implements the party anomaly, particularly focusing on the transport phenomena at the boundary. Based on the parity anomaly matching and the second law of local thermodynamics, we find $mathrm{U}(1)$ and entropy currents localized at the boundary as well as the bulk anomalous current with vanishing divergence. These edge currents are similar to the $(1+1)$-dimensional chiral transports, but the coefficients are given by half of theirs. We also generalize our discussion to more general anomalies among multiple $mathrm{U}(1)$ symmetries and single $mathbb{Z}_2$ symmetry.
Chiral anomalies give rise to dissipationless transport phenomena such as the chiral magnetic and vortical effects. In these notes I review the theory from a quantum field theoretic, hydrodynamic and holographic perspective. A physical interpretation of the otherwise somewhat obscure concepts of consistent and covariant anomalies will be given. Vanishing of the CME in strict equilibrium will be connected to the boundary conditions in momentum space imposed by the regularization. The role of the gravitational anomaly will be explained. That it contributes to transport in an unexpectedly low order in the derivative expansion can be easiest understood via holography. Anomalous transport is supposed to play also a key role in understanding the electronics of advanced materials, the Dirac- and Weyl (semi)metals. Anomaly related phenomena such as negative magnetoresistivity, anomalous Hall effect, thermal anomalous Hall effect and Fermi arcs can be understood via anomalous transport. Finally I briefly review a holographic model of Weyl semimetal which allows to infer a new phenomenon related to the gravitational anomaly: the presence of odd viscosity.
We propose a novel supersymmetry-inspired scheme for achieving robust single mode lasing in arrays of coupled microcavities, based on factorizing a given array Hamiltonian into its supercharge partner array. Pumping a single sublattice of the partner array preferentially induces lasing of an unpaired zero mode. A chiral symmetry protects the zero mode similar to 1D topological arrays, but it need not be localized to domain walls or edges. We demonstrate single mode lasing over a wider parameter regime by designing the zero mode to have a uniform intensity profile.
A derivation of the anomaly-induced transport phenomena---the chiral magnetic/vortical effect---is revisited based on the imaginary-time formalism of quantum field theory. Considering the simplest anomalous system composed of a single Weyl fermion, we provide two derivations: perturbative (one-loop) evaluation of the anomalous transport coefficient, and the anomaly matching for the local thermodynamic functional.
In (2+1)-dimensional QED with a Chern-Simons term, we show that spontaneous magnetization occurs in the context of finite density vacua, which are the lowest Landau levels fully or half occupied by fermions. Charge condensation is shown to appear so as to complement the fermion anti-fermion condensate, which breaks the flavor U(2N) symmetry and causes fermion mass generation. The solutions to the Schwinger-Dyson gap equation show that the fermion self-energy contributes to the induction of a finite fermion density and/or fermion mass. The magnetization can be supported by charge condensation for theories with the Chern-Simons coefficient $kappa=N e^2/2 pi$, and $kappa=N e^2/4 pi$, under the Gauss law constraint. For $kappa=N e^2/4 pi$, both the magnetic field and the fermion mass are simultaneously generated in the half-filled ground state, which breaks the U(2N) symmetry as well as the Lorentz symmetry.
Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed Generalized Hydrodynamics (GHD), was found for quantum integrable models in one spatial dimension. Despite its great predictive power, GHD, like any Euler hydrodynamic equation, misses important quantum effects, such as quantum fluctuations leading to non-zero equal-time correlations between fluid cells at different positions. Focusing on the one-dimensional gas of bosons with delta repulsion, and on states of zero entropy, for which quantum fluctuations are larger, we reconstruct such quantum effects by quantizing GHD. The resulting theory of quantum GHD can be viewed as a multi-component Luttinger liquid theory, with a small set of effective parameters that are fixed by the Thermodynamic Bethe Ansatz. It describes quantum fluctuations of truly nonequilibrium systems where conventional Luttinger liquid theory fails.