Do you want to publish a course? Click here

Inversion formula of multifractal energy dissipation in 3D fully developed turbulence

90   0   0.0 ( 0 )
 Added by Wei-Xing Zhou
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The concept of inverse statistics in turbulence has attracted much attention in the recent years. It is argued that the scaling exponents of the direct structure functions and the inverse structure functions satisfy an inversion formula. This proposition has already been verified by numerical data using the shell model. However, no direct evidence was reported for experimental three dimensional turbulence. We propose to test the inversion formula using experimental data of three dimensional fully developed turbulence by considering the energy dissipation rates in stead of the usual efforts on the structure functions. The moments of the exit distances are shown to exhibit nice multifractality. The inversion formula between the direct and inverse exponents is then verified.



rate research

Read More

We revisit the issue of Lagrangian irreversibility in the context of recent results [Xu, et al., PNAS, 111, 7558 (2014)] on flight-crash events in turbulent flows and show how extreme events in the Eulerian dissipation statistics are related to the statistics of power-fluctuations for tracer trajectories. Surprisingly, we find that particle trajectories in intense dissipation zones are dominated by energy gains sharper than energy losses, contrary to flight-crashes, through a pressure-gradient driven take-off phenomenon. Our conclusions are rationalised by analysing data from simulations of three-dimensional intermittent turbulence, as well as from non-intermittent decimated flows. Lagrangian irreversibility is found to persist even in the latter case, wherein fluctuations of the dissipation rate are shown to be relatively mild and to follow probability distribution functions with exponential tails.
122 - S.I. Vainshtein 2003
Using high Reynolds number experimental data, we search for most dissipative, most intense structures. These structures possess a scaling predicted by log-Poisson model for the dissipation field $epsilon_r$. The probability distribution function for the exponents $alpha$, $epsilon_rsim e^{alpha a}$, has been constructed, and compared with Poisson distribution. These new experimental data suggest that the most intense structures have co-dimension less than 2. The log-Poisson statistics is compared with log-binomial which follows from the random $beta$-model.
We employ the horizontal visibility algorithm to map the velocity and acceleration time series in turbulent flows with different Reynolds numbers, onto complex networks. The universal nature of velocity fluctuations in high Reynolds turbulent Helium flow is found to be inherited in the corresponding network topology. The degree distributions of the acceleration series are shown to have stretched exponential forms with the Reynolds number dependent fitting parameter. Furthermore, for acceleration time series, we find a transitional behavior in terms of the Reynolds number in all network features which is in agreement with recent empirical studies.
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter $gamma$ that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter $gamma$ and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion in power of $gamma$ shows that energy transfers, at leading order, indeed take place, justifying the dissipative nature of this random field.
This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct Numerical Simulations (DNS) of different control strategies are performed at Constant Power Input (CPI), so that at statistical equilibrium each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا