Do you want to publish a course? Click here

Can galaxy clusters, type Ia supernovae and cosmic microwave background rule out a class of modified gravity theories?

135   0   0.0 ( 0 )
 Added by Rodrigo Holanda
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study cosmological signatures of modified gravity theories that can be written as a coupling between a extra scalar field and the electromagnetic part of the usual Lagrangian for the matter fields. In these frameworks all the electromagnetic sector of the theory is affected and variations of fundamental constants, of the cosmic distance duality relation and of the evolution law of the cosmic microwave background radiation (CMB) are expected and are related each other. In order to search these variations we perform jointly analyses with angular diameter distances of galaxy clusters, luminosity distances of type Ia supernovae and $T_{CMB}(z)$ measurements. We obtain tight constraints with no indication of violation of the standard framework.



rate research

Read More

111 - Kamal Bora , Shantanu Desai 2021
We carry out a test of the cosmic distance duality relation using a sample of 52 SPT-SZ clusters, along with X-ray measurements from XMM-Newton. To carry out this test, we need an estimate of the luminosity distance ($D_L$) at the redshift of the cluster. For this purpose, we use three independent methods: directly using $D_L$ from the closest Type Ia Supernovae from the Union 2.1 sample, non-parametric reconstruction of $D_L$ using the same Union 2.1 sample, and finally using $H(z)$ measurements from cosmic chronometers and reconstructing $D_L$ using Gaussian Process regression. We use four different functions to characterize the deviations from CDDR. All our results for these ($4 times 3$) analyses are consistent with CDDR to within 1$sigma$.
We have deduced the cosmic microwave background (CMB) temperature in the Coma cluster (A1656, $z=0.0231$), and in A2163 ($z=0.203$) from spectral measurements of the Sunyaev-Zeldovich (SZ) effect over four passbands at radio and microwave frequencies. The resulting temperatures at these redshifts are $T_{Coma} = 2.789^{+0.080}_{-0.065}$ K and $T_{A2163} = 3.377^{+0.101}_{-0.102}$ K, respectively. These values confirm the expected relation $T(z)=T_{0}(1+z)$, where $T_{0}= 2.725 pm 0.002$ K is the value measured by the COBE/FIRAS experiment. Alternative scaling relations that are conjectured in non-standard cosmologies can be constrained by the data; for example, if $T(z) = T_{0}(1+z)^{1-a}$ or $T(z)=T_{0}[1+(1+d)z]$, then $a=-0.16^{+0.34}_{-0.32}$ and $d = 0.17 pm 0.36$ (at 95% confidence). We briefly discuss future prospects for more precise SZ measurements of $T(z)$ at higher redshifts.
The standard model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these standardisable candles indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
105 - Christopher Gordon , 2008
We estimate the solar system motion relative to the cosmic microwave background using type Ia supernovae (SNe) measurements. We take into account the correlations in the error bars of the SNe measurements arising from correlated peculiar velocities. Without accounting for correlations in the peculiar velocities, the SNe data we use appear to detect the peculiar velocity of the solar system at about the 3.5 sigma level. However, when the correlations are correctly accounted for, the SNe data only detects the solar system peculiar velocity at about the 2.5 sigma level. We forecast that the solar system peculiar velocity will be detected at the 9 sigma level by GAIA and the 11 sigma level by the LSST. For these surveys we find the correlations are much less important as most of the signal comes from higher redshifts where the number density of SNe is insufficient for the correlations to be important.
The standard LambdaCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale $sim 10^{-10} , m , s^{-2}$. Wide-binary (WB) star systems with separations $> 5 , kAU$ provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities against circular velocity predicted from the (2D) projected separations predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories {em without} an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to $sim 0.04 - 0.08$, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to < 0.03 km/s should be able to produce an interesting new constraint on modified-gravity theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا