Do you want to publish a course? Click here

A test of cosmic distance duality relation using SPT-SZ galaxy clusters, Type Ia supernovae, and cosmic chronometers

112   0   0.0 ( 0 )
 Added by Shantanu Desai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We carry out a test of the cosmic distance duality relation using a sample of 52 SPT-SZ clusters, along with X-ray measurements from XMM-Newton. To carry out this test, we need an estimate of the luminosity distance ($D_L$) at the redshift of the cluster. For this purpose, we use three independent methods: directly using $D_L$ from the closest Type Ia Supernovae from the Union 2.1 sample, non-parametric reconstruction of $D_L$ using the same Union 2.1 sample, and finally using $H(z)$ measurements from cosmic chronometers and reconstructing $D_L$ using Gaussian Process regression. We use four different functions to characterize the deviations from CDDR. All our results for these ($4 times 3$) analyses are consistent with CDDR to within 1$sigma$.



rate research

Read More

An approach to estimate the spatial curvature $Omega_k$ from data independently of dynamical models is suggested, through kinematic parameterizations of the comoving distance ($D_{C}(z)$) with third degree polynomial, of the Hubble parameter ($H(z)$) with a second degree polynomial and of the deceleration parameter ($q(z)$) with first order polynomial. All these parameterizations were done as function of redshift $z$. We used SNe Ia dataset from Pantheon compilation with 1048 distance moduli estimated in the range $0.01<z<2.3$ with systematic and statistical errors and a compilation of 31 $H(z)$ data estimated from cosmic chronometers. The spatial curvature found for $D_C(z)$ parametrization was $Omega_{k}=-0.03^{+0.24+0.56}_{-0.30-0.53}$. The parametrization for deceleration parameter $q(z)$ resulted in $Omega_{k}=-0.08^{+0.21+0.54}_{-0.27-0.45}$. The $H(z)$ parametrization has shown incompatibilities between $H(z)$ and SNe Ia data constraints, so these analyses were not combined. The $D_C(z)$ and $q(z)$ parametrizations are compatible with the spatially flat Universe as predicted by many inflation models and data from CMB. This type of analysis is very appealing as it avoids any bias because it does not depend on assumptions about the matter content of the Universe for estimating $Omega_k$.
In this paper, we propose a new test to the cosmic distance duality relation (CDDR), $D_L=D_A(1+z)^2$, where $D_L$ and $D_A$ are the luminosity and angular diameter distances, respectively. The data used correspond to 61 Type Ia Supernova luminosity distances and $Y_{SZE}-Y_X$ measurements of 61 galaxy clusters obtained by the {it Planck} mission and the deep XMM-Newton X-ray data, where $Y_{SZE}$ is the integrated comptonization parameter obtained via Sunyaev-Zeldovich effect observations and $Y_X$ is the X-ray counterpart. More precisely, we use the $Y_{SZE}D_{A}^{2}/C_{XSZE}Y_X$ scaling-relation and a deformed CDDR, such as $D_L/D_A(1+z)^2=eta(z)$, to verify if $eta(z)$ is compatible with the unity. Two $eta(z)$ functions are used, namely, $eta(z)=1+eta_0 z$ and $eta(z)=1+eta_0 z /(1+z)$. { We obtain that the CDDR validity ($eta_0=0$) is verified within $approx 1.5sigma$ c.l. for both $eta(z)$ functions.}.
One of the fundamental hypotheses in observational cosmology is the validity of the so-called cosmic distance-duality relation (CDDR). In this paper, we perform Monte Carlo simulations based on the method developed in Holanda, Goncalves & Alcaniz (2012) [JCAP 1206 (2012) 022] to answer the following question: what is the number of galaxy clusters observations N_{crit} needed to check the validity of this relation at a given confidence level? At 2sigma, we find that N_{crit} should be increased at least by a factor of 5 relative to the current sample size if we assume the current observational uncertainty sigma_{obs}. Reducing this latter quantity by a factor of 2, we show that the present number of data would be already enough to check the validity of the CDDR at 2sigma.
69 - Cong Ma 2016
We test the distance--duality relation $eta equiv d_L / [ (1 + z)^2 d_A ] = 1$ between cosmological luminosity distance ($d_L$) from the JLA SNe Ia compilation (arXiv:1401.4064) and angular-diameter distance ($d_A$) based on Baryon Oscillation Spectroscopic Survey (BOSS; arXiv:1607.03155) and WiggleZ baryon acoustic oscillation measurements (arXiv:1105.2862, arXiv:1204.3674). The $d_L$ measurements are matched to $d_A$ redshift by a statistically consistent compression procedure. With Monte Carlo methods, nontrivial and correlated distributions of $eta$ can be explored in a straightforward manner without resorting to a particular evolution template $eta(z)$. Assuming independent constraints on cosmological parameters that are necessary to obtain $d_L$ and $d_A$ values, we find 9% constraints consistent with $eta = 1$ from the analysis of SNIa + BOSS and an 18% bound results from SNIa + WiggleZ. These results are contrary to previous claims that $eta < 1$ has been found close to or above the $1 sigma$ level. We discuss the effect of different cosmological parameter inputs and the use of the apparent deviation from distance--duality as a proxy of systematic effects on cosmic distance measurements. The results suggest possible systematic overestimation of SNIa luminosity distances compared with $d_A$ data when a Planck {Lambda}CDM cosmological parameter inference (arXiv:1502.01589) is used to enhance the precision. If interpreted as an extinction correction due to a gray dust component, the effect is broadly consistent with independent observational constraints.
In this paper we study cosmological signatures of modified gravity theories that can be written as a coupling between a extra scalar field and the electromagnetic part of the usual Lagrangian for the matter fields. In these frameworks all the electromagnetic sector of the theory is affected and variations of fundamental constants, of the cosmic distance duality relation and of the evolution law of the cosmic microwave background radiation (CMB) are expected and are related each other. In order to search these variations we perform jointly analyses with angular diameter distances of galaxy clusters, luminosity distances of type Ia supernovae and $T_{CMB}(z)$ measurements. We obtain tight constraints with no indication of violation of the standard framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا