Do you want to publish a course? Click here

Multi-Octave Metamaterial Reflective Half-Wave Plate for Millimetre and Sub-Millimetre wave Applications

70   0   0.0 ( 0 )
 Added by Giampaolo Pisano
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half wave plates (HWPs) in front of polarization sensitive detectors. Large operational bandwidths are required when the same device is meant to work simultaneously across different frequency bands. Previous realizations of half wave plates, ranging from birefringent multi-plate to mesh-based devices, have achieved bandwidths of the order of 100%. Here we present the design and the experimental characterization of a reflective HWP able to work across bandwidths of the order of 150%. The working principle of the novel device is completely different from any previous realization and it is based on the different phase-shift experienced by two orthogonal polarizations respectively reflecting off an electric conductor and off an artificial magnetic conductor.



rate research

Read More

Silicate ceramics are of considerable promise as high frequency dielectrics in emerging millimetre wave applications including high bandwidth wireless communication and sensing. In this review, we show how high quality factors and low, thermally stable permittivities arise in ordered silicate structures. On the basis of a large number of existing studies, the dielectric performance of silicate ceramics is comprehensively summarized and presented, showing how microstructure and SiO4 tetrahedral connectivity affect polarizability and dielectric losses. We critically examine the appropriateness of silicate materials in future applications as effective millimetre wave dielectrics with low losses and tuneable permittivities. The development of new soft chemistry based processing routes for silicate dielectric ceramics is identified as being instrumental towards the reduction of processing temperatures, thus enabling silicate ceramics to be co-fired in the production of components functioning in the mm wave regime.
Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation.
In this study, we evaluate the suitability of using DC-biased aluminium resonators as low-frequency kinetic inductance detectors operating in the frequency range of 50 - 120 GHz. Our analysis routine for supercurrent-biased resonators is based on the Usadel equations and gives outputs including density of states, complex conductivities, transmission line properties, and quasiparticle lifetimes. Results from our analysis confirm previous experimental observations on resonant frequency tuneability and retention of high quality factor. Crucially, our analysis suggests that DC-biased resonators demonstrate significantly suppressed superconducting density of states gap. Consequently these resonators have lower frequency detection threshold and are suitable materials for low-frequency kinetic inductance detectors.
Inflation Gravity Waves B-Modes polarization detection is the ultimate goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A big effort is undergoing with the deployment of many ground-based, balloon-borne and satellite experiments using different methods to separate this faint polarized component from the incoming radiation. One of the largely used technique is the Stokes Polarimetry that uses a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate the polarization components with low residual cross-polarization. This paper describes the QUBIC Stokes Polarimeter highlighting its design features and its performances. A common systematic with these devices is the generation of large spurious signals synchronous with the rotation and proportional to the emissivity of the optical elements. A key feature of the QUBIC Stokes Polarimeter is to operate at cryogenic temperature in order to minimize this unwanted component. Moving efficiently this large optical element at low temperature constitutes a big engineering challenge in order to reduce friction power dissipation. Big attention has been given during the designing phase to minimize the differential thermal contractions between parts. The rotation is driven by a stepper motor placed outside the cryostat to avoid thermal load dissipation at cryogenic temperature. The tests and the results presented in this work show that the QUBIC polarimeter can easily achieve a precision below 0.1{deg} in positioning simply using the stepper motor precision and the optical absolute encoder. The rotation induces only few mK of extra power load on the second cryogenic stage (~ 8 K).
We have constructed an achromatic half wave plate (AHWP) suitable for the millimeter wavelength band. The AHWP was made from a stack of three sapphire a-cut birefringent plates with the optical axes of the middle plate rotated by 50.5 degrees with respect to the aligned axes of the other plates. The measured modulation efficiency of the AHWP at 110 GHz was $96 pm 1.5$%. In contrast, the modulation efficiency of a single sapphire plate of the same thickness was $43 pm 4$%. Both results are in close agreement with theoretical predictions. The modulation efficiency of the AHWP was constant as a function of incidence angles between 0 and 15 degrees. We discuss design parameters of an AHWP in the context of astrophysical broad band polarimetry at the millimeter wavelength band.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا