Do you want to publish a course? Click here

Charge puddles in a completely compensated topological insulator

93   0   0.0 ( 0 )
 Added by Carl Willem Rischau
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compensation of intrinsic charges is widely used to reduce the bulk conductivity of 3D topological insulators (TIs). Here we use low temperature electron irradiation-induced defects paired with in-situ electrical transport measurements to fine-tune the degree of compensation in Bi2Te3. The coexistence of electrons and holes at the point of optimal compensation can only be explained by bulk carriers forming charge puddles. These need to be considered to understand the electric transport in compensated TI samples, irrespective of the method of compensation.



rate research

Read More

We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light polarization, sample orientation, and photon energy. We demonstrate the $pm$100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as a full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture.
309 - W. X. Zhou , H. J. Wu , J. Zhou 2020
Integrating multiple properties in a single system is crucial for the continuous developments in electronic devices. However, some physical properties are mutually exclusive in nature. Here, we report the coexistence of two seemingly mutually exclusive properties-polarity and two-dimensional conductivity-in ferroelectric Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ thin films at the LaAlO$_3$/Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ interface at room temperature. The polarity of a ~3.2 nm Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ thin film is preserved with a two-dimensional mobile carrier density of ~0.05 electron per unit cell. We show that the electronic reconstruction resulting from the competition between the built-in electric field of LaAlO$_3$ and the polarization of Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ is responsible for this unusual two-dimensional conducting polar phase. The general concept of exploiting mutually exclusive properties at oxide interfaces via electronic reconstruction may be applicable to other strongly-correlated oxide interfaces, thus opening windows to new functional nanoscale materials for applications in novel nanoelectronics.
A key feature of the topological surface state under a magnetic field is the presence of the zeroth Landau level at the zero energy. Nonetheless, it has been challenging to probe the zeroth Landau level due to large electron-hole puddles smearing its energy landscape. Here, by developing ultra-low-carrier density topological insulator Sb$_2$Te$_3$ films, we were able to reach an extreme quantum limit of the topological surface state and uncover a hidden phase at the zeroth Landau level. First, we discovered an unexpected quantum-Hall-to-insulator-transition near the zeroth Landau level. Then, through a detailed scaling analysis, we found that this quantum-Hall-to-insulator-transition belongs to a new universality class, implying that the insulating phase discovered here has a fundamentally different origin from those in non-topological systems.
The fermionic self-energy on the surface of a topological insulator proximity coupled to ferro- and antiferromagnetic insulators is studied. An enhanced electron-magnon coupling is achieved by allowing the electrons on the surface of the topological insulator to have a different exchange coupling to the two sublattices of the antiferromagnet. Such a system is therefore seen as superior to a ferromagnetic interface for the realization of magnon-mediated superconductivity. The increased electron-magnon-coupling simultaneously increases the self-energy effects. A careful study of this has been lacking, and in this paper we show how the inverse quasiparticle lifetime and energy renormalization on the surface of the topological insulator can be kept low close to the Fermi level by using a magnetic insulator with a sufficient easy-axis anisotropy. We find that the antiferromagnetic case is most interesting both from a theoretical and an experimental standpoint due to the increased electron-magnon coupling, combined with a reduced need for easy-axis anisotropy compared to the ferromagnetic case. We also consider a set of material and instrumental parameters where these self-energies should be measurable in angle-resolved photoemission spectroscopy (ARPES) experiments, paving the way for a measurement of the interfacial exchange coupling strength.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا