Do you want to publish a course? Click here

Stiffness of the C-terminal disordered linker affects the geometry of the active site in endoglucanase Cel8A

63   0   0.0 ( 0 )
 Added by Bartosz Rozycki
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

Cellulosomes are complex multi-enzyme machineries which efficiently degrade plant cell-wall polysaccharides. The multiple domains of the cellulosome proteins are often tethered together by intrinsically disordered regions. The properties and functions of these disordered linkers are not well understood. In this work, we study endoglucanase Cel8A, which is a relevant enzymatic component of the cellulosomes of Clostridium thermocellum. We use both all-atom and coarse-grained simulations to investigate how the equilibrium conformations of the catalytic domain of Cel8A are affected by the disordered linker at its C terminus. We find that when the endoglucanase is bound to its substrate, the effective stiffness of the linker can influence the distances between groups of amino-acid residues throughout the entire enzymatic domain. In particular, variations in the linker stiffness can lead to small changes in the geometry of the active-site cleft. We suggest that such geometrical changes may, in turn, have an effect on the catalytic activity of the enzyme.



rate research

Read More

Multicellular organisms consist of cells that interact via elaborate adhesion complexes. Desmosomes are membrane-associated adhesion complexes that mechanically tether the cytoskeletal intermediate filaments (IFs) between two adjacent cells, creating a network of tough connections in tissues such as skin and heart. Desmoplakin (DP) is the key desmosomal protein that binds IFs, and the DP-IF association poses a quandary: desmoplakin must stably and tightly bind IFs to maintain the structural integrity of the desmosome. Yet, newly synthesized DP must traffick along the cytoskeleton to the site of nascent desmosome assembly without sticking to the IF network, implying weak or transient DP--IF contacts. Recent work reveals that these contacts are modulated by post-translational modifications (PTMs) in DPs C-terminal tail. Using molecular dynamics simulations, we have elucidated the structural basis of these PTM-induced effects. Our simulations, nearing 2 microseconds in aggregate, indicate that phosphorylation of S2849 induces an arginine claw in desmoplakins C-terminal tail (DPCTT). If a key arginine, R2834, is methylated, the DPCTT preferentially samples conformations that are geometrically well-suited as substrates for processive phosphorylation by the cognate kinase GSK3. We suggest that DPCTT is a molecular switch that modulates, via its conformational dynamics, DPs efficacy as a substrate for GSK3. Finally, we show that the fluctuating DPCTT can contact other parts of DP, suggesting a competitive binding mechanism for the modulation of DP--IF interactions.
The prion protein (PrP) binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH=7.4. Recent experiments show that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square planar coordination. By using first principle ab initio molecular dynamics simulations of the Car-Parrinello type, the Cu coordination mode to the binding sites of the PrP octarepeat region is investigated. Simulations are carried out for a number of structured binding sites. Results for the complexes Cu(HGGGW)+(wat), Cu(HGGG) and the 2[Cu(HGGG)] dimer are presented. While the presence of a Trp residue and a H2O molecule does not seem to affect the nature of the Cu coordination, high stability of the bond between Cu and the amide Nitrogens of deprotonated Glys is confirmed in the case of the Cu(HGGG) system. For the more interesting 2[Cu(HGGG)] dimer a dynamically entangled arrangement of the two monomers, with intertwined N-Cu bonds, emerges. This observation is consistent with the highly packed structure seen in experiments at full Cu occupancy.
We construct a one-bead-per-residue coarse-grained dynamical model to describe intrinsically disordered proteins at significantly longer timescales than in the all-atom models. In this model, inter-residue contacts form and disappear during the course of the time evolution. The contacts may arise between the sidechains, the backbones or the sidechains and backbones of the interacting residues. The model yields results that are consistent with many all-atom and experimental data on these systems. We demonstrate that the geometrical properties of various homopeptides differ substantially in this model. In particular, the average radius of gyration scales with the sequence length in a residue-dependent manner.
SARS-CoV-2 is what has caused the COVID-19 pandemic. Early viral infection is mediated by the SARS-CoV-2 homo-trimeric Spike (S) protein with its receptor binding domains (RBDs) in the receptor-accessible state. We performed molecular dynamics simulation on the S protein with a focus on the function of its N-terminal domains (NTDs). Our study reveals that the NTD acts as a wedge and plays a crucial regulatory role in the conformational changes of the S protein. The complete RBD structural transition is allowed only when the neighboring NTD that typically prohibits the RBDs movements as a wedge detaches and swings away. Based on this NTD wedge model, we propose that the NTD-RBD interface should be a potential drug target.
Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP alpha-synuclein that include geometric, attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that alpha-synuclein is disordered with conformational statistics that are intermediate between random walk and collapsed globule behavior. An advantage of calibrated molecular simulations over constraint methods is that physical forces act on all residues, not only on residue pairs that are monitored experimentally, and these simulations can be used to study oligomerization and aggregation of multiple alpha-synuclein proteins that may precede amyloid formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا