No Arabic abstract
Multicellular organisms consist of cells that interact via elaborate adhesion complexes. Desmosomes are membrane-associated adhesion complexes that mechanically tether the cytoskeletal intermediate filaments (IFs) between two adjacent cells, creating a network of tough connections in tissues such as skin and heart. Desmoplakin (DP) is the key desmosomal protein that binds IFs, and the DP-IF association poses a quandary: desmoplakin must stably and tightly bind IFs to maintain the structural integrity of the desmosome. Yet, newly synthesized DP must traffick along the cytoskeleton to the site of nascent desmosome assembly without sticking to the IF network, implying weak or transient DP--IF contacts. Recent work reveals that these contacts are modulated by post-translational modifications (PTMs) in DPs C-terminal tail. Using molecular dynamics simulations, we have elucidated the structural basis of these PTM-induced effects. Our simulations, nearing 2 microseconds in aggregate, indicate that phosphorylation of S2849 induces an arginine claw in desmoplakins C-terminal tail (DPCTT). If a key arginine, R2834, is methylated, the DPCTT preferentially samples conformations that are geometrically well-suited as substrates for processive phosphorylation by the cognate kinase GSK3. We suggest that DPCTT is a molecular switch that modulates, via its conformational dynamics, DPs efficacy as a substrate for GSK3. Finally, we show that the fluctuating DPCTT can contact other parts of DP, suggesting a competitive binding mechanism for the modulation of DP--IF interactions.
Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP alpha-synuclein that include geometric, attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that alpha-synuclein is disordered with conformational statistics that are intermediate between random walk and collapsed globule behavior. An advantage of calibrated molecular simulations over constraint methods is that physical forces act on all residues, not only on residue pairs that are monitored experimentally, and these simulations can be used to study oligomerization and aggregation of multiple alpha-synuclein proteins that may precede amyloid formation.
The prion protein (PrP) binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH=7.4. Recent experiments show that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square planar coordination. By using first principle ab initio molecular dynamics simulations of the Car-Parrinello type, the Cu coordination mode to the binding sites of the PrP octarepeat region is investigated. Simulations are carried out for a number of structured binding sites. Results for the complexes Cu(HGGGW)+(wat), Cu(HGGG) and the 2[Cu(HGGG)] dimer are presented. While the presence of a Trp residue and a H2O molecule does not seem to affect the nature of the Cu coordination, high stability of the bond between Cu and the amide Nitrogens of deprotonated Glys is confirmed in the case of the Cu(HGGG) system. For the more interesting 2[Cu(HGGG)] dimer a dynamically entangled arrangement of the two monomers, with intertwined N-Cu bonds, emerges. This observation is consistent with the highly packed structure seen in experiments at full Cu occupancy.
Cellulosomes are complex multi-enzyme machineries which efficiently degrade plant cell-wall polysaccharides. The multiple domains of the cellulosome proteins are often tethered together by intrinsically disordered regions. The properties and functions of these disordered linkers are not well understood. In this work, we study endoglucanase Cel8A, which is a relevant enzymatic component of the cellulosomes of Clostridium thermocellum. We use both all-atom and coarse-grained simulations to investigate how the equilibrium conformations of the catalytic domain of Cel8A are affected by the disordered linker at its C terminus. We find that when the endoglucanase is bound to its substrate, the effective stiffness of the linker can influence the distances between groups of amino-acid residues throughout the entire enzymatic domain. In particular, variations in the linker stiffness can lead to small changes in the geometry of the active-site cleft. We suggest that such geometrical changes may, in turn, have an effect on the catalytic activity of the enzyme.
There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteostatin and Zn2+ ions, and their osteogenic effect on human mesenchymal stem cells (hMSCs) as a preclinical strategy in bone regeneration. By using additive fabrication techniques, scaffolds exhibiting hierarchical porosity: mesopores , macropores and big channels, were prepared. These MBG scaffolds with or without osteostatin were evaluated in cell cultures of hMSCs. Zinc promoted hMSCs colonization (both the surface and inside) of MBG scaffolds. Moreover, Zn2+ ions and osteostatin together, but not independently, in the scaffolds were found to induce the osteoblast differentiation genes runt related transcription factor-2 (RUNX2) and alkaline phosphatase (ALP) in hMSCs after 7 d of culture in the absence of an osteogenic differentiation-promoting medium. These results add credence to the combined use of zinc and osteostatin as an effective strategy for bone regeneration applications.
The chaperonin GroEL-GroES, a machine which helps some proteins to fold, cycles through a number of allosteric states, the $T$ state, with high affinity for substrate proteins (SPs), the ATP-bound $R$ state, and the $R^{primeprime}$ ($GroEL-ADP-GroES$) complex. Structures are known for each of these states. Here, we use a self-organized polymer (SOP) model for the GroEL allosteric states and a general structure-based technique to simulate the dynamics of allosteric transitions in two subunits of GroEL and the heptamer. The $T to R$ transition, in which the apical domains undergo counter-clockwise motion, is mediated by a multiple salt-bridge switch mechanism, in which a series of salt-bridges break and form. The initial event in the $R to R^{primeprime}$ transition, during which GroEL rotates clockwise, involves a spectacular outside-in movement of helices K and L that results in K80-D359 salt-bridge formation. In both the transitions there is considerable heterogeneity in the transition pathways. The transition state ensembles (TSEs) connecting the $T$, $R$, and $R^{primeprime}$ states are broad with the the TSE for the $T to R$ transition being more plastic than the $Rto R^{primeprime}$ TSE. The results suggest that GroEL functions as a force-transmitting device in which forces of about (5-30) pN may act on the SP during the reaction cycle.