No Arabic abstract
The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi gamma-ray data, allows us to update and refine the orbital period to 45-50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swift observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Halpha emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over timescales as short as 1-2 months. Multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.
We present X-ray and radio monitoring observations of the gamma-ray binary PSR J2032+4127/MT91 213 during its periastron passage in late 2017. Dedicated Chandra, XMM-Newton,NuSTAR X-ray observations and VLA radio observations of this long orbit (50 years), 143 ms pulsar/Be star system clearly revealed flux and spectral variability during the passage. The X-ray spectrum hardened near periastron, with a significant decrease in the power-law photon index from Gamma ~ 2 to 1.2 and evidence of an increased absorption column density. We identified a possible spectral break at a few keV in the spectrum that suggests synchrotron cooling. A coincident radio and X-ray flare occurred one week after periastron, which is possibly the result of the pulsar wind interacting with the Be stellar disk and generating synchrotron radiation. However, a multi-wavelength comparison indicate that the X-ray and radio spectra cannot be simply connected by a single power-law component. Hence, the emission in these two energy bands must originate from different particle populations.
X-ray photometry and optical spectra are presented covering the periastron passage of the highly-eccentric, ~50 year binary system PSR J2032+4127 in November 2017. This system consists of a 143 ms pulsar in orbit around a massive OB star, MT 91-213. The data show dramatic changes during the encounter as the pulsar wind collided with the stellar wind. The X-ray flux rose on the approach to periastron, then underwent a major dip in the few days around periastron, and then gradually declined over the next few weeks. The optical spectroscopy revealed a steady decline in the H? line strength on the approach to periastron (from an Equivalent Width of -15A to -7A) implying a truncation of the OB stars circumstellar disk by the approaching neutron star. Smooth Particle Hydrodynamic (SPH) modelling is used here to model the system within the context of the observed behaviour and predict the geometrical configuration of the circumstellar disk with respect to the pulsars orbit.
During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like features at several pulse phases. However, in hard X-ray energy ranges, the pulse profiles are rather smooth and single-peaked. Pulse phase-averaged spectroscopy of the these pulsars had been carried out during Type I outbursts. The broad-band spectrum of these pulsars were well described by partial covering high energy cutoff power-law model with interstellar absorption and Iron K_alpha emission line at 6.4 keV. Phase-resolved spectroscopy revealed that the presence of additional matter at certain pulse phases that partially obscured the emitted radiation giving rise to dips in the pulse profiles. The additional absorption is understood to be taking place by matter in the accretion streams that are phase locked with the neutron star. Optical/infrared observations of the companion Be star during these Type I outbursts showed that the increase in the X-ray intensity of the pulsar is coupled with the decrease in the optical/infrared flux of the companion star. There are also several changes in the IR/optical emission line profiles during these X-ray outbursts. The X-ray properties of these pulsars during Type I outbursts and corresponding changes in optical/infrared wavebands are discussed in this paper.
PSR J2032+4127 is a gamma-ray and radio-emitting pulsar which has been regarded as a young luminous isolated neutron star. However, its recent spin-down rate has extraordinarily increased by a factor of two. We present evidence that this is due to its motion as a member of a highly-eccentric binary system with a 15-solar-mass Be star, MT91~213. Timing observations show that, not only are the positions of the two stars coincident within 0.4 arcsec, but timing models of binary motion of the pulsar fit the data much better than a model of a young isolated pulsar. MT91~213, and hence the pulsar, lie in the Cyg~OB2 stellar association, which is at a distance of only 1.4-1.7 kpc. The pulsar is currently on the near side of, and accelerating towards, the Be star, with an orbital period of 20-30 years. The next periastron is well-constrained to occur in early 2018, providing an opportunity to observe enhanced high-energy emission as seen in other Be-star binary systems.