Do you want to publish a course? Click here

X-ray and Infrared Properties of Be/X-ray Binary Pulsars

187   0   0.0 ( 0 )
 Added by Sachindra Naik
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

During normal Type I outbursts, the pulse profiles of Be/X-ray binary pulsars are found to be complex in soft X-ray energy ranges. The profiles in soft X-ray energy ranges are characterized by the presence of narrow absorption dips or dip-like features at several pulse phases. However, in hard X-ray energy ranges, the pulse profiles are rather smooth and single-peaked. Pulse phase-averaged spectroscopy of the these pulsars had been carried out during Type I outbursts. The broad-band spectrum of these pulsars were well described by partial covering high energy cutoff power-law model with interstellar absorption and Iron K_alpha emission line at 6.4 keV. Phase-resolved spectroscopy revealed that the presence of additional matter at certain pulse phases that partially obscured the emitted radiation giving rise to dips in the pulse profiles. The additional absorption is understood to be taking place by matter in the accretion streams that are phase locked with the neutron star. Optical/infrared observations of the companion Be star during these Type I outbursts showed that the increase in the X-ray intensity of the pulsar is coupled with the decrease in the optical/infrared flux of the companion star. There are also several changes in the IR/optical emission line profiles during these X-ray outbursts. The X-ray properties of these pulsars during Type I outbursts and corresponding changes in optical/infrared wavebands are discussed in this paper.



rate research

Read More

We present results obtained from an extensive near-infrared spectroscopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~111 day orbital period. This observation campaign is a part of the monitoring programme of selective Be/X-ray binary systems aimed at understanding the X-ray and near-IR properties at different orbital phases, especially during the periastron passage of the neutron star. The near-IR observations were carried out using the 1.2 m telescope at Mt. Abu IR observatory. Though the source was relatively faint for spectroscopic observations with 1.2 m telescope, we monitored the source during the 2011 February--March giant outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra take place at the periastron passage. Changes of such a striking nature were expected to be detectable in our spectra. Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst that could suggest a mild evacuation/truncation of the circumstellar disc of the Be companion. Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830, 1.7002 and 2.0585 micron. The presence of all hydrogen emission lines in the JHK spectra, along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases suggest that the near-IR line emitting regions of the disc are not significantly affected during the X-ray outburst.
Observations of accreting neutron stars (NS) with strong magnetic fields can be used not only for studying the accretion flow interaction with NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (i) the interaction of a rotating neutron star (magnetosphere) with the in-falling matter at different accretion rates, and (ii) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: i) relatively bright objects with a luminosity around ~10^34 erg/s and (hard) power-law spectra, and ii) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group i) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the in-falling matter with the neutron star magnetic field and those describing heating and cooling in accreting NSs.
We report the timing and spectral properties of Be/X-ray binary pulsar GX 304-1 by using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ~275 s were clearly detected in the light curves from both the observations. Pulse profiles were found to be strongly energy-dependent. During 2010 observation, prominent dips seen in soft X-ray ($leq$10 keV) pulse profiles were found to be absent at higher energies. However, during 2012 observation, the pulse profiles were complex due to the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies ($>$35 keV). A phase shift of $sim$0.3 was detected while comparing the phase of main dip in pulse profiles below and above $sim$35 keV. Broad-band energy spectrum of pulsar was well described by a partially absorbed Negative and Positive power-law with Exponential cutoff (NPEX) model with 6.4 keV iron line and a cyclotron absorption feature. Energy of cyclotron absorption line was found to be $sim$53 and 50 keV for 2010 and 2012 observations, respectively, indicating a marginal positive dependence on source luminosity. Based on the results obtained from phase-resolved spectroscopy, the absorption dips in the pulse profiles can be interpreted as due to the presence of additional matter at same phases. Observed positive correlation between cyclotron line energy and luminosity, and significant pulse-phase variation of cyclotron parameters are discussed in the perspective of theoretical models on cyclotron absorption line in X-ray pulsars.
In this paper we study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a $Suzaku$ observation on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s which suggests that the pulsar is spinning-up. The pulse profiles were found to be peculiar e.g. unlike that obtained from the earlier Suzaku observation on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broad-band spectrum of the pulsar was found to be well described by three continuum models such as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high-energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. Unlike earlier Suzaku observation during which several low energy emission lines were detected, a weak and narrow Iron K_alpha emission line at 6.4 keV was only present in the pulsar spectrum during the 2012 May outburst. Non-detection of any absorption like feature in 1-100 keV energy range supports the claim of absence of cyclotron resonance scattering feature in EXO 2030+375 from earlier Suzaku observation. Pulse-phase resolved spectroscopy revealed the presence of additional dense matter causing the absence of second peak from the soft X-ray pulse profiles. The details of the results are described in the paper.
We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period December 2017 - January 2020 (MJD~58095 - MJD~58865). In December 2017 the $Halpha$, $Hbeta$, and HeI 6678 emission lines were symmetric with violet-to-red peak ratio $V/R approx 1$. During the first part of the period (December 2017 - August 2018) the V/R-ratio decreased to 0.5 and the asymmetry developed simultaneously in all three lines. In September 2018, a third component with velocity $approx 250$~km~s$^{-1}$ appeared on the red side of the HeI line profile. Later this component emerged in $Hbeta$, accompanied by the appearance of a red shoulder in $Halpha$. Assuming that it is due to an eccentric wave in the circumstellar disc, we find that the eccentric wave appeared first in the innermost part of the disc, it spreads out with outflowing velocity $v_{wave} approx 1.1 pm 0.2 $~km~s$^{-1}$, and the eccentricity of the eccentric wave is $e_{wave} approx 0.29 pm 0.07$. A detailed understanding of the origin of such eccentricities would have applications to a wide range of systems from planetary rings to AGNs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا