Do you want to publish a course? Click here

Clustering of Intermediate Luminosity X-ray selected AGN at z~3

128   0   0.0 ( 0 )
 Added by Harold Francke
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first clustering results of X-ray selected AGN at z~3. Using Chandra X-ray imaging and UVR optical colors from MUSYC photometry in the ECDF-S field, we selected a sample of 58 z~3 AGN candidates. From the optical data we also selected 1385 LBG at 2.8<z< 3.8 with R<25.5. We performed auto-correlation and cross-correlation analyses, and here we present results for the clustering amplitudes and dark matter halo masses of each sample. For the LBG we find a correlation length of r_0,LBG = 6.7 +/- 0.5 Mpc, implying a bias value of 3.5 +/- 0.3 and dark matter (DM) halo masses of log(Mmin/Msun) = 11.8 +/- 0.1. The AGN-LBG cross-correlation yields r_0,AGN-LBG = 8.7 +/- 1.9 Mpc, implying for AGN at 2.8<z<3.8 a bias value of 5.5 +/- 2.0 and DM halo masses of log(Mmin/Msun) = 12.6 +0.5/-0.8. Evolution of dark matter halos in the Lambda CDM cosmology implies that today these z~3 AGN are found in high mass galaxies with a typical luminosity of 7+4/-2 L*.



rate research

Read More

154 - James Aird 2008
We combine Lyman-break colour selection with ultradeep (> 200 ks) Chandra X-ray imaging over a survey area of ~0.35 deg^2 to select high redshift AGN. Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at z~3. Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at z=1, we find no evidence that the faint slope of the XLF flattens at high z, but we do find significant (factor ~3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity L*. Our data therefore support models of luminosity-dependent density evolution between z=1 and z=3. A sharp upturn in the the XLF is seen at the very lowest luminosities (Lx < 10^42.5 erg s^-1), most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.
129 - A. Georgakakis 2008
We explore the role of the group environment in the evolution of AGN at the redshift interval 0.7<z<1.4, by combining deep Chandra observations with extensive optical spectroscopy from the All-wavelength Extended Groth strip International Survey (AEGIS). The sample consists of 3902 optical sources and 71 X-ray AGN. Compared to the overall optically selected galaxy population, X-ray AGN are more frequently found in groups at the 99% confidence level. This is partly because AGN are hosted by red luminous galaxies, which are known to reside, on average, in dense environments. Relative to these sources, the excess of X-ray AGN in groups is significant at the 91% level only. Restricting the sample to 0.7<z<0.9 and M_B<-20mag in order to control systematics we find that X-ray AGN represent (4.7pm1.6) and (4.5pm1.0)% of the optical galaxy population in groups and in the field respectively. These numbers are consistent with the AGN fraction in low redshift clusters, groups and the field. The results above, although affected by small number statistics, suggest that X-ray AGN are spread over a range of environments, from groups to the field, once the properties of their hosts (e.g. colour, luminosity) are accounted for. There is also tentative evidence, significant at the 98% level, that the field produces more X-ray luminous AGN compared to groups, extending similar results at low redshift to z~1. This trend may be because of either cold gas availability or the nature of the interactions occurring in the denser group environment (i.e. prolonged tidal encounters).
We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34<z<1.07 with ultra-deep (m=26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 AA break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (L_X<10^44 erg/s) are hosted by massive galaxies (typically M*>10^10.5 M_sun) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependencies of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U-V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 AA breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U-V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000)~1.4 and light weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognising these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.
We discuss a sample of 29 AGN (16 narrow-lined and 13 broad-lined) discovered in a spectroscopic survey of ~1000 star-forming Lyman-break galaxies (LBGs) at z~3. Reaching apparent magnitudes of R_{AB}=25.5, the sample includes broad-lined AGN approximately 100 times less UV-luminous than most surveys to date covering similar redshifts, and the first statistical sample of UV/optically-selected narrow-lined AGN at high redshift. The fraction of objects in our survey with clear evidence for AGN activity is ~3%. A substantial fraction, perhaps even most, of these objects would not have been detected in even the deepest existing X-ray surveys. We argue that these AGN are plausibly hosted by the equivalent of LBGs. The UV luminosities of the broad-lined AGN in the sample are compatible with Eddington-limited accretion onto black holes that satisfy the locally determined M_{BH} versus M_{bulge} relation given estimates of the stellar masses of LBGs. The clustering properties of the AGN are compatible with their being hosted by objects similar to LBGs. The implied lifetime of the active AGN phase in LBGs, if it occurs some time during the active star-formation phase, is ~10^7 years.
77 - X. Barcons 1998
We have discovered an obscured active galaxy at redshift z = 1.246 identified with the ROSAT X-ray source RX J1011.2+5545. We report on multiwavelength observations of this source and discuss its X-ray, optical and radio properties. This is the first X-ray selected, obscured active galaxy at high redshift to be shown to be radio-loud, with a radio counterpart exhibiting a classical double-lobe morphology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا