Do you want to publish a course? Click here

Supermassive black holes formed by direct collapse of inflationary perturbations

69   0   0.0 ( 0 )
 Added by Tomohiro Nakama
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial black holes whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradicting COBE/FIRAS upper limits on cosmic microwave background (CMB) spectral distortions. In our model, the observable Universe consists of two kinds of many small patches which experienced different expansion histories during inflation. Primordial perturbations large enough to form primordial black holes are realized on patches that experienced more Hubble expansion than the others. By making these patches the minor component, the rarity of supermassive black holes can be explained. On the other hand, most regions of the Universe experienced the standard history and, hence, only have standard almost-scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures of the Universe. Thus, our mechanism can evade the constraint from the nondetection of the CMB distortion set by the COBE/FIRAS measurement. Our model predicts the existence of supermassive black holes even at redshifts much higher than those observed. Hence, our model can be tested by future observations peeking into the higher-redshift Universe.



rate research

Read More

61 - I.F. Mirabel 2016
Binary black holes as the recently detected sources of gravitational waves can be formed from massive stellar binaries in the field or by dynamical interactions in clusters of high stellar density, if the black holes are the remnants of massive stars that collapsed without natal kicks that would disrupt the binary system or eject the black holes from the cluster before binary black hole formation. Here are summarized and discussed the kinematics in three dimensions of space of five Galactic black hole X-ray binaries. For Cygnus X-1 and GRS 1915+105 it is found that the black holes of ~15 and ~10 solar masses in these sources were formed in situ, without energetic kicks. These observations suggest that binary black holes with components of ~10 solar masses may have been prolifically produced in the universe.
Rapid infall of gas in the nuclei of galaxies could lead to the formation of black holes by direct collapse, without first forming stars. Black holes formed in this way would have initial masses of a few solar masses, but would be embedded in massive envelopes that would allow them to grow at a highly super-Eddington rate. Thus, seed black holes as large as 10^3-10^4 solar masses could form very rapidly. I will sketch the basic physics of the direct collapse process and the properties of the accreting envelopes.
314 - V. Bozza 2007
Extreme gravitational lensing refers to the bending of photon trajectories that pass very close to supermassive black holes and that cannot be described in the conventional weak deflection limit. A complete analytical description of the whole expected phenomenology has been achieved in the recent years using the strong deflection limit. These progresses and possible directions for new investigations are reviewed in this paper at a basic level. We also discuss the requirements for future facilities aimed at detecting higher order gravitational lensing images generated by the supermassive black hole in the Galactic center.
We study parameter estimation of supermassive black holes in the range $10^5-10^8Ms$ by LISA using the inspiral full post-Newtonian gravitational waveforms, and we compare the results with those arising from the commonly used restricted post-Newtonian approximation. The analysis shows that for observations of the last year before merger, the inclusion of the higher harmonics clearly improves the parameter estimation. We pay special attention to the source location errors and we study the improvement on the percentage of sources for which we could potentially identify electromagnetic counterparts. We also show how the additional harmonics can help to mitigate the impact of losing laser links during the mission.
We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy the Teukolsky equation, and are related to the Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the GHP formalism, avoids the need for a mode ansatz and leads to potentials that represent both static and non-static solutions. As an explicit example, we specialise the procedure to mode-decomposed perturbations of Kerr spacetime and in the process make connections with previous results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا