Do you want to publish a course? Click here

Reactive magnetron sputter deposition of superconducting niobium titanium nitride thin films with different target sizes

72   0   0.0 ( 0 )
 Added by David Thoen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The superconducting critical temperature (Tc > 15K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale detector microchips is demanding NbTiN films with uniform properties over an increasingly larger area. This article provides an experimental comparison between two reactive d.c. sputter systems with different target sizes: a small target (100mm diameter) and a large target (127 mm x 444.5 mm). This article focuses on maximizing the Tc of the films and the accompanying I-V characteristics of the sputter plasma, and we find that both systems are capable of depositing films with Tc > 15 K. The resulting film uniformity is presented in a second manuscript in this volume. We find that these films are deposited within the transition from metallic to compound sputtering, at the point where target nitridation most strongly depends on nitrogen flow. Key in the deposition optimization is to increase the systems pumping speed and gas flows to counteract the hysteretic effects induced by the target size. Using the I-V characteristics as a guide proves to be an effective way to optimize a reactive sputter system, for it can show whether the optimal deposition regime is hysteresis-free and accessible.



rate research

Read More

We use room temperature ion beam assisted sputtering (IBAS) to deposit niobium nitride thin films. Electrical and structural characterizations were performed by electric transport and magnetization measurements at variable temperatures, X-ray diffraction and atomic force microscopy. Compared to reactive sputtering of NbN, films sputtered in presence of an ion beam show remarkable increase in the superconducting critical temperature T$_{rm{c}}$, while exhibiting lower sensitivity to nitrogen concentration during deposition. Thickness dependence of the superconducting critical temperature is comparable to films prepared by conventional methods at high substrate temperatures and is consistent with behavior driven by quantum size effects or weak localization.
We report on the direct measurement of the electron-phonon relaxation time, {tau}eph, in disordered TiN films. Measured values of {tau}eph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T-3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.
If driven sufficiently strongly, superconducting microresonators exhibit nonlinear behavior including response bifurcation. This behavior can arise from a variety of physical mechanisms including heating effects, grain boundaries or weak links, vortex penetration, or through the intrinsic nonlinearity of the kinetic inductance. Although microresonators used for photon detection are usually driven fairly hard in order to optimize their sensitivity, most experiments to date have not explored detector performance beyond the onset of bifurcation. Here we present measurements of a lumped-element superconducting microresonator designed for use as a far-infrared detector and operated deep into the nonlinear regime. The 1 GHz resonator was fabricated from a 22 nm thick titanium nitride film with a critical temperature of 2 K and a normal-state resistivity of $100, mu Omega,$cm. We measured the response of the device when illuminated with 6.4 pW optical loading using microwave readout powers that ranged from the low-power, linear regime to 18 dB beyond the onset of bifurcation. Over this entire range, the nonlinear behavior is well described by a nonlinear kinetic inductance. The best noise-equivalent power of $2 times 10^{-16}$ W/Hz$^{1/2}$ at 10 Hz was measured at the highest readout power, and represents a $sim$10 fold improvement compared with operating below the onset of bifurcation.
In this paper we report the deposition of epitaxial thin films of Nd1-xSrxCoO3 with x=0, 0.2 and 0.5 on single crystalline substrates (SrTiO3 and LaAlO3) carried out by means of rf-magnetron sputtering. The deposited films are all completely oriented and epitaxial and characterized by a nanocrystalline morphology. As-deposited films have an average roughness around 1 nm while after the thermal treatment this increases up to 20 nm while preserving the nanocrystalline morphology. All the films deposited on SrTiO3 have shown to be under a certain degree of tensile strain while those on the LaAlO3 experience a compressive strain thus suggesting that at about 50 nm the films are not fully relaxed, even after the thermal treatment. For the x=0.2 composition three different thickness have been investigated revealing an increased strain for the thinner films.
We fabricated superconducting MgB2 thin films on (001) MgO substrates. The samples were prepared by magnetron rf and dc co-sputtering on heated substrates. They were annealed ex-situ for one hour at temperatures between 450{deg}C and 750{deg}C. We will show that the substrate temperature during the sputtering process and the post annealing temperatures play a crucial role in forming MgB2 superconducting thin films. We achieved a critical onset temperature of 27.1K for a film thickness of 30nm. The crystal structures were measured by x-ray diffraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا