Do you want to publish a course? Click here

RF Sputter Deposition of Epitaxial Nanocrystalline Nd1-xSrxCoO3 Thin Films

65   0   0.0 ( 0 )
 Added by Lorenzo Malavasi
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report the deposition of epitaxial thin films of Nd1-xSrxCoO3 with x=0, 0.2 and 0.5 on single crystalline substrates (SrTiO3 and LaAlO3) carried out by means of rf-magnetron sputtering. The deposited films are all completely oriented and epitaxial and characterized by a nanocrystalline morphology. As-deposited films have an average roughness around 1 nm while after the thermal treatment this increases up to 20 nm while preserving the nanocrystalline morphology. All the films deposited on SrTiO3 have shown to be under a certain degree of tensile strain while those on the LaAlO3 experience a compressive strain thus suggesting that at about 50 nm the films are not fully relaxed, even after the thermal treatment. For the x=0.2 composition three different thickness have been investigated revealing an increased strain for the thinner films.



rate research

Read More

In this paper we reported, to the best of our knowledge, the first deposition of highly oriented thin films (with thickness of about 90 nm) of NdCoO3 and Nd0.8Sr0.2CoO3 cobaltites on single-crystalline STO and LAO substrates. Our investigation has shown that highly oriented single phase thin films of NCO and NSCO can be successfully deposited by means of rf-sputtering if the substrates is heated at high temperatures (700C); lower substrate temperature has shown to lead to multi-phase materials with a low crystallinity degree . LAO substrate showed to give origin to a prefect match of the out-of-plane lattice constant of the NSCO target material.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex-situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
107 - W. Si , E. M. Cruz , P. D. Johnson 2002
Pulsed-laser deposition has been used to grow epitaxial thin films of the giant-dielectric-constant material CaCu_3Ti_4O_{12} on LaAlO_3 and SrTiO_3 substrates with or without various conducting buffer layers. The latter include YBa_2Cu_3O_7, La_{1.85}Sr_{0.15}CuO_{4+delta} and LaNiO_3. Above 100K - 150K the thin films have a temperature independent dielectric constant as do single crystals. The value of the dielectric constant is of the order of 1500 over a wide temperature region, potentially making it a good candidate for many applications. The frequency dependence of its dielectric properties below 100K - 150K indicates an activated relaxation process.
137 - Chi Vo-Van 2011
Uniform single layer graphene was grown on single-crystal Ir films a few nanometers thick which were prepared by pulsed laser deposition on sapphire wafers. These graphene layers have a single crystallographic orientation and a very low density of defects, as shown by diffraction, scanning tunnelling microscopy, and Raman spectroscopy. Their structural quality is as high as that of graphene produced on Ir bulk single crystals, i.e. much higher than on metal thin films used so far.
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growth of BaZrS3, a prototypical chalcogenide, by pulsed laser deposition. X-ray diffraction studies show that the films are strongly textured out of plane and have a clear in-plane epitaxial relationship with the substrate. Electron microscopy studies confirm the presence of epitaxy for the first few layers of the film at the interface, even though away from the interface the films are polycrystalline with a large number of extended defects suggesting the potential for further improvement in growth. X-Ray reflectivity and atomic force microscopy show smooth film surfaces and interfaces between the substrate and the film. The films show strong light absorption near the band edge and photoluminescence in the visible region. The photodetector devices show fast and efficient photo response with the highest ON/OFF ratio reported for BaZrS3 films thus far. Our study opens up opportunities to realize epitaxial thin films, heterostructures, and superlattices of chalcogenide perovskites to probe fundamental physical phenomena and the resultant electronic and photonic device technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا