Do you want to publish a course? Click here

Intensity Interferometry with Aqueye+ and Iqueye in Asiago

126   0   0.0 ( 0 )
 Added by Luca Zampieri
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since a number of years our group is engaged in the design, construction and operation of instruments with very high time resolution in the optical band for applications to Quantum Astronomy and more conventional Astrophysics. Two instruments were built to perform photon counting with sub-nanosecond temporal accuracy. The first of the two, Aqueye+, is regularly mounted at the 1.8 m Copernicus telescope in Asiago, while the second one, Iqueye, was mounted at the ESO New Technology Telescope in Chile, and at the William Herschel Telescope and Telescopio Nazionale Galileo on the Roque (La Palma, Canary Islands). Both instruments deliver extraordinarily accurate results in optical pulsar timing. Recently, Iqueye was moved to Asiago to be mounted at the 1.2 m Galileo telescope to attempt, for the first time ever, experiments of optical intensity interferometry (a` la Hanbury Brown and Twiss) on a baseline of a few kilometers, together with the Copernicus telescope. This application was one of the original goals for the development of our instrumentation. To carry out these measurements, we are experimenting a new way of coupling the instruments to the telescopes, by means of moderate-aperture, low-optical-attenuation multi-mode optical fibers with a double-clad design. Fibers are housed in dedicated optical interfaces attached to the focus of another instrument of the 1.8 m telescope (Aqueye+) or to the Nasmyth focus of the 1.2 m telescope (Iqueye). This soft-mount solution has the advantage to facilitate the mounting of the photon counters, to keep them under controlled temperature and humidity conditions (reducing potential systematics related to varying ambient conditions), and to mitigate scheduling requirements. Here we will describe the first successful implementation of the Asiago intensity interferometer and future plans for improving it.



rate research

Read More

We report the first-time use of the Aqueye+ and Iqueye instruments to record lunar occultation events. High-time resolution recordings in different filters have been acquired for several occultations taken from January 2016 through January 2018 with Aqueye+ at the Copernicus telescope and Iqueye at the Galileo telescope in Asiago, Italy. Light curves with different time bins were calculated in post-processing and analyzed using a least-square model-dependent method. A total of nine occultation light curves were recorded, including one star for which we could measure for the first time the size of the chromosphere ($mu$ Psc) and one binary star for which discrepant previous determinations existed in the literature (SAO 92922). A disappearance of Alf Tau shows an angular diameter in good agreement with literature values. The other stars were found to be unresolved, at the milliarcsecond level. We discuss the unique properties of Aqueye+ and Iqueye for this kind of observations, namely the simultaneous measurement in up to four different filters thanks to pupil splitting, and the unprecedented time resolution well exceeding the microsecond level. This latter makes Aqueye+ and Iqueye suitable to observe not just occultations by the Moon, but also much faster events such as e.g. occultations by artificial screens in low orbits. We provide an outlook of future possible observations in this context.
135 - Vinay Malvimat 2013
The original intensity interferometers were instruments built in the 1950s and 60s by Hanbury Brown and collaborators, achieving milli-arcsec resolutions in visible light without optical-quality mirrors. They exploited a then-novel physical effect, now known as HBT correlation after the experiments of Hanbury Brown and Twiss, and nowadays considered fundamental in quantum optics. Now a new generation of inten- sity interferometers is being designed, raising the possibility of measuring intensity correlations with three or more detectors. Quantum optics predicts some interesting features in higher-order HBT. One is that HBT correlation increases combinatorially with the number of detectors. Signal to noise considerations suggest, that many-detector HBT correlations would be mea- surable for bright masers, but very difficult for thermal sources. But the more modest three-detector HBT correlation seems measurable for bright stars, and would provide image information (namely the bispectrum) not present in standard HBT.
We report the first detection of an optical millisecond pulsar with the fast photon counter Aqueye+ in Asiago. This is an independent confirmation of the detection of millisecond pulsations from PSR J1023+0038 obtained with SiFAP at the Telescopio Nazionale Galileo. We observed the transitional millisecond pulsar PSR J1023+0038 with Aqueye+ mounted at the Copernicus telescope in January 2018. Highly significant pulsations were detected. The rotational period is in agreement with the value extrapolated from the X-ray ephemeris, while the time of passage at the ascending node is shifted by $11.55 pm 0.08$ s from the value predicted using the orbital period from the X-rays. An independent optical timing solution is derived over a baseline of a few days, that has an accuracy of $sim 0.007$ in pulse phase ($sim 12$ $mu$s in time). This level of precision is needed to derive an accurate coherent timing solution for the pulsar and to search for possible phase shifts between the optical and X-ray pulses using future simultaneous X-ray and optical observations.
We propose a new approach, based on the Hanbury Brown and Twiss intensity interferometry, to transform a Cherenkov telescope to its equivalent optical telescope. We show that, based on the use of photonics components borrowed from quantum-optical applications, we can recover spatial details of the observed source down to the diffraction limit of the Cherenkov telescope, set by its diameter at the mean wavelength of observation. For this, we propose to apply aperture synthesis techniques from pairwise and triple correlation of sub-pupil intensities, in order to reconstruct the image of a celestial source from its Fourier moduli and phase information, despite atmospheric turbulence. We examine the sensitivity of the method, i.e. limiting magnitude, and its implementation on existing or future high energy arrays of Cherenkov telescopes. We show that despite its poor optical quality compared to extremely large optical telescopes under construction, a Cherenkov telescope can provide diffraction limited imaging of celestial sources, in particular at the visible, down to violet wavelengths.
93 - Prasenjit Saha 2020
With the current revival of interest in astronomical intensity interferometry, it is interesting to revisit the associated theory, which was developed in the 1950s and 1960s. This paper argues that intensity interferometry can be understood as an extension of Fraunhofer diffraction to incoherent light. Interference patterns are still produced, but they are speckle-like and transient, changing on a time scale of $1/Delta u$ (where $Delta u$ is the frequency bandwidth) known as the coherence time. Bright fringes average less than one photon per coherence time, hence fringes change before they can be observed. But very occasionally, two or even more photons may be detected from an interference pattern within a coherence time. These rare coincident photons provide information about the underlying transient interference pattern, and hence about the source brightness distribution. Thinking in terms of transient sub-photon interference patterns makes it easy to see why intensity interferometry will have large optical-path tolerance, and be immune to atmospheric seeing. The unusual signal-to-noise properties also become evident. We illustrate the unobservable but conceptually useful transient interference patterns, and their observable correlation signal, with three simulated examples: (i) an elongated source like Achernar, (ii) a three-star system like Algol, and (iii) a crescent source that roughly mimics an exoplanet transit or perhaps the M87 black hole environment. Of these, (i) and (ii) are good targets for currently-planned setups, while (iii) is interesting to think about for the longer term.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا