Do you want to publish a course? Click here

Properties of Magnetic Tongues over a Solar Cycle

78   0   0.0 ( 0 )
 Added by Mariano Poisson
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The photospheric spatial distribution of the main magnetic polarities of bipolar active regions (ARs) presents during their emergence deformations are known as magnetic tongues. They are attributed to the presence of twist in the toroidal magnetic flux-tubes that form the ARs. The aim of this article is to study the twist of newly emerged ARs from the evolution of magnetic tongues observed in photospheric line-of-sight magnetograms. We apply the procedure described by Poisson et al. (2015, Solar Phys. 290, 727) to ARs observed over the full Solar Cycle 23 and the beginning of Cycle 24. Our results show that the hemispherical rule obtained using the tongues as a proxy of the twist has a weak sign-dominance (53 % in the southern hemisphere and 58 % in the northern hemisphere). By defining the variation of the tongue angle, we characterize the strength of the magnetic tongues during different phases of the AR emergence. We find that there is a tendency of the tongues to be stronger during the beginning of the emergence and to become weaker as the AR reaches its maximum magnetic flux. We compare this evolution with the emergence of a toroidal flux-rope model with non-uniform twist. The variety of evolution of the tongues in the analyzed ARs can only be reproduced when using a broad range of twist profiles, in particular having a large variety of twist gradient in the direction vertical to the photosphere. Although the analytical model used is a special case, selected to minimize the complexity of the problem, the results obtained set new observational constraints to theoretical models of flux-rope emergence that form bipolar ARs.



rate research

Read More

225 - Y. Gao , T. Sakurai , H. Zhang 2013
The current helicity in solar active regions derived from vector magnetograph observations for more than 20 years indicates the so-called hemispheric sign rule; the helicity is predominantly negative in the northern hemisphere and positive in the southern hemisphere. In this paper we revisit this property and compare the statistical distribution of current helicity with Gaussian distribution using the method of normal probability paper. The data sample comprises 6630 independent magnetograms obtained at Huairou Solar Observing Station, China, over 1988-2005 which correspond to 983 solar active regions. We found the following. (1) For the most of cases in time-hemisphere domains the distribution of helicity is close to Gaussian. (2) At some domains (some years and hemispheres) we can clearly observe significant departure of the distribution from a single Gaussian, in the form of two- or multi-component distribution. (3) For the most non-single-Gaussian parts of the dataset we see co-existence of two or more components, one of which (often predominant) has a mean value very close to zero, which does not contribute much to the hemispheric sign rule. The other component has relatively large value of helicity that often determines agreement or disagreement with the hemispheric sign rule in accord with the global structure of helicity reported by Zhang et al. (2010).
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Measurements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
According to the scheme of action of the solar dynamo, the poloidal magnetic field can be considered a source of production of the toroidal magnetic field by the solar differential rotation. From the polar magnetic field proxies, it is natural to expect that solar Cycle 25 will be weak as recorded in sunspot data. We suggest that there are parameters of the zonal harmonics of the solar surface magnetic field, such as the magnitude of the $ell$=3 harmonic or the effective multipole index, that can be used as a reasonable addition to the polar magnetic field proxies. We discuss also some specific features of solar activity indices in Cycles 23 and 24.
The cyclic, enigmatic, and ubiquitous magnetism of the Sun provides the energy we need to survive and has the ability to destroy our technologically dependent civilization. Never before has understanding solar magnetism and forecasting its behavior been so relevant. Indeed, on a broader canvas, understanding solar magnetism is a gateway to understanding the evolution and activity of other stars - the Sun is an astrophysical Rosetta Stone. Despite the centuries of observation, the past century of precise characterization, and significant advances in theoretical and numerical modeling over the past several decades, we have broken the cypher of the Suns global-scale magnetism. Using a host of observables spanning 140 years we will revisit an observational concept, the extended solar cycle, (ESC) that came to the fore in the mid-1980s but almost completely disappeared from the common consciousness of the global solar physics less than a sunspot cycle later - it is unclear why. Using a recently identified solar fiducial time, the end (or termination) of a solar cycle, we employ superposed epoch analysis to identify the ESC as a mapping of the Suns fundamental magnetic activity cycle and also as a recurring spatio-temporal unit of solar evolution. The ESC is a pattern from which the spatio-temporal pattern, and numerical modulation, of sunspots is produced. This effort illustrates that the ESC is the manifestation of the Suns Hale Cycle. We will close by pointing out areas of investigation indicated by the pattern of the Hale Cycle that may permit the conversion from observational correspondence to fundamental physical processes and a leap forward in understanding solar activity.
We propose a novel approach to reconstruct the surface magnetic helicity density on the Sun or sun-like stars. The magnetic vector potential is determined via decomposition of vector magnetic field measurements into toroidal and poloidal components. The method is verified using data from a non-axisymmetric dynamo model. We apply the method to vector field synoptic maps from Helioseismic and Magnetic Imager (HMI) onboard of Solar Dynamics Observatory (SDO) to study evolution of the magnetic helicity density during solar cycle 24. It is found that the mean helicity density of the non-axisymmetric magnetic field of the Sun evolves in a way which is similar to that reported for the current helicity density of the solar active regions. It has predominantly the negative sign in the northern hemisphere, and it is positive in the southern hemisphere. Also, the hemispheric helicity rule for the non-axisymmetric magnetic field showed the sign inversion at the end of cycle 24. Evolution of magnetic helicity density of large-scale axisymmetric magnetic field is different from that expected in dynamo theory. On one hand, the mean large- and small-scale components of magnetic helicity density display the hemispheric helicity rule of opposite sign at the beginning of cycle 24. However, later in the cycle, the two helicities exhibit the same sign in contrast with the theoretical expectations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا