Do you want to publish a course? Click here

MindX: Denoising Mixed Impulse Poisson-Gaussian Noise Using Proximal Algorithms

63   0   0.0 ( 0 )
 Added by Mohamed Aly
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We present a novel algorithm for blind denoising of images corrupted by mixed impulse, Poisson, and Gaussian noises. The algorithm starts by applying the Anscombe variance-stabilizing transformation to convert the Poisson into white Gaussian noise. Then it applies a combinatorial optimization technique to denoise the mixed impulse Gaussian noise using proximal algorithms. The result is then processed by the inverse Anscombe transform. We compare our algorithm to state of the art methods on standard images, and show its superior performance in various noise conditions.



rate research

Read More

Fluorescence microscopy has enabled a dramatic development in modern biology. Due to its inherently weak signal, fluorescence microscopy is not only much noisier than photography, but also presented with Poisson-Gaussian noise where Poisson noise, or shot noise, is the dominating noise source. To get clean fluorescence microscopy images, it is highly desirable to have effective denoising algorithms and datasets that are specifically designed to denoise fluorescence microscopy images. While such algorithms exist, no such datasets are available. In this paper, we fill this gap by constructing a dataset - the Fluorescence Microscopy Denoising (FMD) dataset - that is dedicated to Poisson-Gaussian denoising. The dataset consists of 12,000 real fluorescence microscopy images obtained with commercial confocal, two-photon, and wide-field microscopes and representative biological samples such as cells, zebrafish, and mouse brain tissues. We use image averaging to effectively obtain ground truth images and 60,000 noisy images with different noise levels. We use this dataset to benchmark 10 representative denoising algorithms and find that deep learning methods have the best performance. To our knowledge, this is the first real microscopy image dataset for Poisson-Gaussian denoising purposes and it could be an important tool for high-quality, real-time denoising applications in biomedical research.
Motivated by penalized likelihood maximization in complex models, we study optimization problems where neither the function to optimize nor its gradient have an explicit expression, but its gradient can be approximated by a Monte Carlo technique. We propose a new algorithm based on a stochastic approximation of the Proximal-Gradient (PG) algorithm. This new algorithm, named Stochastic Approximation PG (SAPG) is the combination of a stochastic gradient descent step which - roughly speaking - computes a smoothed approximation of the past gradient along the iterations, and a proximal step. The choice of the step size and the Monte Carlo batch size for the stochastic gradient descent step in SAPG are discussed. Our convergence results cover the cases of biased and unbiased Monte Carlo approximations. While the convergence analysis of the Monte Carlo-PG is already addressed in the literature (see Atchade et al. [2016]), the convergence analysis of SAPG is new. The two algorithms are compared on a linear mixed effect model as a toy example. A more challenging application is proposed on non-linear mixed effect models in high dimension with a pharmacokinetic data set including genomic covariates. To our best knowledge, our work provides the first convergence result of a numerical method designed to solve penalized Maximum Likelihood in a non-linear mixed effect model.
Orbit insertion at Saturn requires a large impulsive manoeuver due to the velocity difference between the spacecraft and the planet. This paper presents a strategy to reduce dramatically the hyperbolic excess speed at Saturn by means of deep-space electric propulsion. The interplanetary trajectory includes a gravity assist at Jupiter, combined with low-thrust maneuvers. The thrust arc from Earth to Jupiter lowers the launch energy requirement, while an ad hoc steering law applied after the Jupiter flyby reduces the hyperbolic excess speed upon arrival at Saturn. This lowers the orbit insertion impulse to the point where capture is possible even with a gravity assist with Titan. The control-law algorithm, the benefits to the mass budget and the main technological aspects are presented and discussed. The simple steering law is compared with a trajectory optimizer to evaluate the quality of the results and possibilities for improvement.
Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is also a convex set in R^{N+1}. The iterative optimization approach starts with an arbitrary initial estimate in R^{N+1} and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation (TV), filtered variation (FV), L_1, and entropic cost functions. A new denoising algorithm using the TV framework is developed. The new algorithm does not require any of the regularization parameter adjustment. Simulation examples are presented.
Blind image denoising is an important yet very challenging problem in computer vision due to the complicated acquisition process of real images. In this work we propose a new variational inference method, which integrates both noise estimation and image denoising into a unique Bayesian framework, for blind image denoising. Specifically, an approximate posterior, parameterized by deep neural networks, is presented by taking the intrinsic clean image and noise variances as latent variables conditioned on the input noisy image. This posterior provides explicit parametric forms for all its involved hyper-parameters, and thus can be easily implemented for blind image denoising with automatic noise estimation for the test noisy image. On one hand, as other data-driven deep learning methods, our method, namely variational denoising network (VDN), can perform denoising efficiently due to its explicit form of posterior expression. On the other hand, VDN inherits the advantages of traditional model-driven approaches, especially the good generalization capability of generative models. VDN has good interpretability and can be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected in real scenarios. Comprehensive experiments are performed to substantiate the superiority of our method in blind image denoising.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا