Do you want to publish a course? Click here

Stochastic Proximal Gradient Algorithms for Penalized Mixed Models

78   0   0.0 ( 0 )
 Added by Edouard Ollier
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Motivated by penalized likelihood maximization in complex models, we study optimization problems where neither the function to optimize nor its gradient have an explicit expression, but its gradient can be approximated by a Monte Carlo technique. We propose a new algorithm based on a stochastic approximation of the Proximal-Gradient (PG) algorithm. This new algorithm, named Stochastic Approximation PG (SAPG) is the combination of a stochastic gradient descent step which - roughly speaking - computes a smoothed approximation of the past gradient along the iterations, and a proximal step. The choice of the step size and the Monte Carlo batch size for the stochastic gradient descent step in SAPG are discussed. Our convergence results cover the cases of biased and unbiased Monte Carlo approximations. While the convergence analysis of the Monte Carlo-PG is already addressed in the literature (see Atchade et al. [2016]), the convergence analysis of SAPG is new. The two algorithms are compared on a linear mixed effect model as a toy example. A more challenging application is proposed on non-linear mixed effect models in high dimension with a pharmacokinetic data set including genomic covariates. To our best knowledge, our work provides the first convergence result of a numerical method designed to solve penalized Maximum Likelihood in a non-linear mixed effect model.



rate research

Read More

Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, optionally, account for measurement error. Fully Bayesian inference for state-space SDEMEMs is performed, using data at discrete times that may be incomplete and subject to measurement error. However, the inference problem is complicated by the typical intractability of the observed data likelihood which motivates the use of sampling-based approaches such as Markov chain Monte Carlo. A Gibbs sampler is proposed to target the marginal posterior of all parameter values of interest. The algorithm is made computationally efficient through careful use of blocking strategies and correlated pseudo-marginal Metropolis-Hastings steps within the Gibbs scheme. The resulting methodology is flexible and is able to deal with a large class of SDEMEMs. The methodology is demonstrated on three case studies, including tumor growth dynamics and neuronal data. The gains in terms of increased computational efficiency are model and data dependent, but unless bespoke sampling strategies requiring analytical derivations are possible for a given model, we generally observe an efficiency increase of one order of magnitude when using correlated particle methods together with our blocked-Gibbs strategy.
Non linear mixed effect models are classical tools to analyze non linear longitudinal data in many fields such as population Pharmacokinetic. Groups of observations are usually compared by introducing the group affiliations as binary covariates with a reference group that is stated among the groups. This approach is relatively limited as it allows only the comparison of the reference group to the others. In this work, we propose to compare the groups using a penalized likelihood approach. Groups are described by the same structural model but with parameters that are group specific. The likelihood is penalized with a fused lasso penalty that induces sparsity on the differences between groups for both fixed effects and variances of random effects. A penalized Stochastic Approximation EM algorithm is proposed that is coupled to Alternating Direction Method Multipliers to solve the maximization step. An extensive simulation study illustrates the performance of this algorithm when comparing more than two groups. Then the approach is applied to real data from two pharmacokinetic drug-drug interaction trials.
We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We extend the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data.
107 - Simon Rabanser , Lukas Neumann , 2018
The development of accurate and efficient image reconstruction algorithms is a central aspect of quantitative photoacoustic tomography (QPAT). In this paper, we address this issues for multi-source QPAT using the radiative transfer equation (RTE) as accurate model for light transport. The tissue parameters are jointly reconstructed from the acoustical data measured for each of the applied sources. We develop stochastic proximal gradient methods for multi-source QPAT, which are more efficient than standard proximal gradient methods in which a single iterative update has complexity proportional to the number applies sources. Additionally, we introduce a completely new formulation of QPAT as multilinear (MULL) inverse problem which avoids explicitly solving the RTE. The MULL formulation of QPAT is again addressed with stochastic proximal gradient methods. Numerical results for both approaches are presented. Besides the introduction of stochastic proximal gradient algorithms to QPAT, we consider the new MULL formulation of QPAT as main contribution of this paper.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo (SMC) methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا