Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductors by a Korringa ratio analysis. Motivated by the NMR work, we investigate the possible existence of FM fluctuations in another iron pnictide superconducting family, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$. We re-analyzed our previously reported data in terms of the Korringa ratio and found clear evidence for the coexistence of stripe-type AFM and FM spin correlations in the electron-doped CaFe$_2$As$_2$ system. These NMR data indicate that FM fluctuations exist in general in iron-pnictide superconducting families and thus must be included to capture the phenomenology of the iron pnictides.
We report $^{75}$As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ($x$ = 0.023, 0.028, 0.033, and 0.059) annealed at 350~$^{circ}$C for 7 days. From the observation of a characteristic shape of $^{75}$As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of $x$ = 0 ($T_{rm N}$ = 170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in $x$ = 0.023 ($T_{rm N}$ = 106 K) and $x$ = 0.028 ($T_{rm N}$ = 53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/$T_1$), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature $T^*$ which was nearly independent of Co-substitution concentration, and is attributed to a pseudogap-like behavior in the spin excitation spectra of these systems. The $T^*$ feature finds correlation with features in the temperature-dependent inter-plane resistivity, $rho_c(T)$, but not with the in-plane resistivity $rho _a (T)$. The temperature evolution of anisotropic stripe-type AFM spin fluctuations are tracked in the paramagnetic and pseudogap phases by the 1/$T_1$ data measured under magnetic fields parallel and perpendicular to the $c$ axis. Based on our NMR data, we have added a pseudogap-like phase to the magnetic and electronic phase diagram of Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$.
Inelastic neutron scattering measurements have been performed on underdoped Ba(Fe1-xCox)2As2 (x = 4.7%) where superconductivity and long-range antiferromagnetic (AFM) order coexist. The broad magnetic spectrum found in the normal state develops into a magnetic resonance feature below TC that has appreciable dispersion along c-axis with a bandwidth of 3-4 meV. This is in contrast to the optimally doped x = 8.0% composition, with no long-range AFM order, where the resonance exhibits a much weaker dispersion [see Lumsden et al. Phys. Rev. Lett. 102, 107005 (2009)]. The results suggest that the resonance dispersion arises from interlayer spin correlations present in the AFM ordered state.
75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6%. Nuclear Magnetic Resonance (NMR) spectra and relaxation rates allow to show that all Fe sites experience an incommensurate magnetic ordering below T=31K. Comparison with undoped compound allows to estimate a typical moment of 0.05 muB. Anisotropy of the NMR widths can be interpreted using a model of incommensurability with a wavevector (1/2-eps,0,l) with eps of the order of 0.04. Below TC=21.8K, a full volume superconductivity develops as shown by susceptibility and relaxation rate, and magnetic order remains unaffected, demonstrating coexistence of both states on each Fe site.
The evolution of 75As NMR parameters with composition and temperature was probed in the Ba(Fe1-xRux)2As2 system where Fe is replaced by isovalent Ru. While the Ru-end member was found to be a conventional Fermi liquid, the composition (x=0.5) corresponding to the highest Tc (20K) in this system shows an upturn in 75As 1/T1T below about 80 K evidencing the presence of antiferromagnetic (AFM) fluctuations. These results are similar to those obtained in another system with isovalent substitution BaFe2(As1-xPx)2 [Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, H. Ikeda, S. Kasahara, H. Shishido, T. Shibauchi, Y. Matsuda, and T. Terashima, Phys. Rev. Lett. 105, 107003 (2010)] and point to the possible role of AFM fluctuations in driving superconductivity.
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samples, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
J. Cui
,P. Wiecki
,S. Ran
.
(2016)
.
"Coexistence of antiferromagnetic and ferromagnetic spin correlations in Ca(Fe1-xCox)2As2 revealed by 75As nuclear magnetic resonance"
.
Yuji Furukawa
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا